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Overview

Intent
Language summaries
Library ecosystem
Tools
Type systems
Known issues
Learning resources
Recommendations
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Intent

To summarize options under consideration

To explore ecosystems and tooling for options
To compare the type system level guarantees and ability to
abstract/reuse
To document known issues
To point to resources to learn more
To offer strategic recommendations

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



Intent

To summarize options under consideration
To explore ecosystems and tooling for options

To compare the type system level guarantees and ability to
abstract/reuse
To document known issues
To point to resources to learn more
To offer strategic recommendations

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



Intent

To summarize options under consideration
To explore ecosystems and tooling for options
To compare the type system level guarantees and ability to
abstract/reuse

To document known issues
To point to resources to learn more
To offer strategic recommendations

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



Intent

To summarize options under consideration
To explore ecosystems and tooling for options
To compare the type system level guarantees and ability to
abstract/reuse
To document known issues

To point to resources to learn more
To offer strategic recommendations

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



Intent

To summarize options under consideration
To explore ecosystems and tooling for options
To compare the type system level guarantees and ability to
abstract/reuse
To document known issues
To point to resources to learn more

To offer strategic recommendations

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



Intent

To summarize options under consideration
To explore ecosystems and tooling for options
To compare the type system level guarantees and ability to
abstract/reuse
To document known issues
To point to resources to learn more
To offer strategic recommendations

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



Haskell

Appeared: 1990
Home page: current, WIP
Compiler: GHC
Latest release: 7.8.3, July 11, 2014
Native assembly generation
OS: Linux, Windows, OS X >=10.7, iOS, FreeBSD, Solaris
Platforms: x86, ARM
Paradigms: functional, non-strict
Notes: Renowned type system, concurrent/fast runtime, cryptol
Try: Haskell
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http://www.haskell.org/
http://new-www.haskell.org/
http://www.haskell.org/ghc/
http://www.cryptol.net/
http://tryhaskell.org/


Haskell

factorial :: Integral a => a -> a
factorial n

| n < 2 = 1
| otherwise = n * factorial (n - 1)

data Tree a =
Empty

| Branch a (Tree a) (Tree a) deriving (Show, Eq)

insert :: Ord a => Tree a -> a -> Tree a
insert Empty x = Branch x Empty Empty
insert (Branch v l r) x

| x <= v = Branch v (insert l x) r
| x > v = Branch v l (insert r x)
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Scala

Appeared: 2004
Home page: site
Compiler: Scala
Latest release: 2.11.2, July 24, 2014
JVM byte code generation
OS: Anything that can host the JVM
Platforms: JVM
Paradigms: functional, object-oriented, strict
Notes: Effective type system, leverages JVM libraries, spark
Try: Scala
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http://www.scala-lang.org/
http://www.scala-lang.org/
https://spark.apache.org/
http://www.simplyscala.com/


Scala

sealed trait Tree[A]
case class Empty[A]() extends Tree[A]
case class Branch[A](v: A, l: Tree[A], r: Tree[A])

extends Tree[A]

object samples {
def insert[A <% Ordered[A]]

(t: Tree[A], x: A): Tree[A] = t match {
case Empty() => Branch(x, Empty(), Empty())
case Branch(v, l, r) =>

if (x <= v) Branch(v, insert(l, x), r)
else Branch(v, l, insert(r, x))

}
def factorial(n: Int): Int = {

if (n < 2) 1 else n * factorial (n - 1)
}

}
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Go

Appeared: 2009
Home page: site
Compiler: Go
Latest release: 1.3.1, August 13, 2014
Native assembly generation
OS: Linux, OS X, Windows, BSDs
Paradigms: imperative, object-oriented
Notes: Concurrency support, fast compilation, docker
Try: Go
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http://golang.org/
http://golang.org/
https://www.docker.com/
http://tour.golang.org/#1


Go

func factorial(n int) int {
if n < 2 {

return 1
}
return n * factorial(n - 1)

}

type Tree struct {
l, r *Tree
v interface{} // not type-safe; think (void *)

}

func insert(t Tree, x interface{}) Tree {
// not-even-going-to-try.jpg

}
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At a Glance (compiler, rts, stdlib, tests)

Summary Haskell Scala Go

Appeared 1990 2004 2009
Latest Release
Date

July 2014 July 2014 August 2014

Platform x86, ARM* JVM x86
Paradigm Functional,

Imperative
OO,
Functional

OO,
Imperative

REPL Yes Yes No
LOC Main 394539 (Haskell) 268572

(Scala)
432018 (Go)

LOC Other 45760 (C) 29919 (Java) 151908 (C)
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Library Support

A language without a breadth of a libraries is a language that is
rarely used
A language lacking package management infrastructure is
harder to adopt
An FFI is important to leverage works that came before
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Haskell

Package index: Hackage/Stackage
Count: >6000
Package manager: cabal
Package format: Cabal file - example
FFI: Yes (C, JS)
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http://hackage.haskell.org/
http://www.stackage.org/
http://www.haskell.org/cabal/
https://github.com/ekmett/lens/blob/master/lens.cabal


Scala

Package index: Maven
Count: >80000 (mixed with Java)
Package manager: sbt, others
Package format: scala example
FFI: Yes (Java, JNI/C)
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http://search.maven.org/
http://www.scala-sbt.org/
https://github.com/scalaz/scalaz/blob/series/7.2.x/project/build.scala


Go

Package index: Go-Search
Count: >50000
Package manager: gopm (experimental)
Package format: .gopmfile (CONF)
FFI: Yes (C)
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http://go-search.org/
https://github.com/gpmgo/gopm


At a Glance

Packages Haskell Scala Go

Index Hackage Maven Go-Search
Count >6000 >80000

(+Java)
>50000

Manager cabal sbt gopm (exp.)
FFI C, JS Java, C C
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Tooling

What editors are available?
How about IDEs?
Profiling?
Debugging?
Others?
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Haskell

Editors
emacs + ghc-mod
vim + ghc-mod
EclipseFP

Profiling
GHC
criterion
ThreadScope
Heap Profiler
Test Coverage

Debugging: N/A
Others

Type search: Hoogle, Hayoo
Style: hlint
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http://www.mew.org/~kazu/proj/ghc-mod/en/
https://github.com/eagletmt/ghcmod-vim
http://eclipsefp.github.io/
https://www.haskell.org/ghc/docs/latest/html/users_guide/profiling.html
http://www.serpentine.com/criterion/tutorial.html
http://www.haskell.org/haskellwiki/ThreadScope
https://www.haskell.org/ghc/docs/latest/html/users_guide/hp2ps.html
http://www.haskell.org/haskellwiki/Haskell_program_coverage
http://www.haskell.org/hoogle/
http://hayoo.fh-wedel.de/
http://community.haskell.org/~ndm/hlint/


Scala

Editors
emacs + scala-mode2 + ensime
vim + vim-scala
Eclipse + Scala IDE

Profiling
ScalaMeter
Java HeapAudit

Debugging
Scala IDE

Others
Type search: Scalaex
Linting: Wart Remover, Scala Style
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https://github.com/hvesalai/scala-mode2
https://github.com/ensime/ensime-server
https://github.com/derekwyatt/vim-scala
http://scala-ide.org/
http://scalameter.github.io/
http://engineering.foursquare.com/2012/02/02/heapaudit-jvm-memory-profiler-for-the-real-world/
http://scala-ide.org/docs/current-user-doc/features/scaladebugger/index.html
http://scalex.org/
https://github.com/typelevel/wartremover
http://www.scalastyle.org/


Go

Editors
emacs + go-mode
vim + go-mode
Various IDEs, including IntelliJ

Profiling
pprof
go testing bench

Debugger
gdb

Others
Linting: govet
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http://golang.org/misc/emacs/go-mode.el?m=text
https://github.com/fatih/vim-go
http://geekmonkey.org/articles/20-comparison-of-ides-for-google-go
http://blog.golang.org/profiling-go-programs
http://dave.cheney.net/2013/06/30/how-to-write-benchmarks-in-go
https://golang.org/doc/gdb
https://godoc.org/code.google.com/p/go.tools/cmd/vet


Type Systems

A programming language is a frontend to its type system
A powerful type system is a proof engine

Curry-Howard Isomorphism

Proofs are the only means to rule out errors; testing cannot do
this
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https://blog.cppcabrera.com/posts/homotopy-summary.html


At a Glance

Type System
Haskell Scala Go

Analysis
Time

Static Static Static

Immutable
Default

Yes (all) No No

1st-Class
Functions

Yes Yes No

Type
Inference

Yes Yes* Poor

Evaluation
Model

Lazy Strict Strict

Modules Yes (weak) Yes (strong) Yes (strong)

Scala type inference will sometimes yield an Any
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At a Glance

Type System
Haskell Scala Go

Implicit
Casts

No Yes No*

Generics Yes Yes No
Higher Kinds Yes Yes No

Nullable
Values

No Yes Yes

Strong Type
Alias

newtype case class No

There’s a case where Go allows for implicit conversion

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go

http://dominik.honnef.co/posts/2012/12/go__on_implicit_type_conversions__type_identity_and_a_little_gotcha/


At a Glance

Type System Haskell Scala Go

Sum Types Yes Yes No
Product
Types

Yes Yes No

Recursive
Types

Yes Yes No

Pattern
Matching

Yes Yes No

Effect
Tracking

Yes Possible* No

Effect tracking can be achieved via scalaz, with a few caveats
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https://github.com/scalaz/scalaz


At a Glance

Type System Haskell Scala Go

Overloading Typeclass Implicits No
Records Yes Yes Yes
Subtyping No* Yes Yes
Dependent
Types

No* No* No

Subtyping impedes static analysis
Dependent types can be faked in type systems on par with
Haskell’s/Scala’s, within limits
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https://personal.cis.strath.ac.uk/conor.mcbride/pub/hasochism.pdf


Known Issues

Compilers aren’t free of defects
Adopting a language entails owning these defects and working
around quirks
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At a Glance

Issues Haskell Scala* Go

Known 942 4772 1216
Critical 5 157 N/A
Major 42 443 N/A
FFI C, JS Java, C C

Scala issues include: compiler backend, collections, concurrent
lib, enumeration, macros, misc. compiler, optimizer, pattern
matcher, presentation compiler, quasiquotes, reflection, repl
Go issue tracker does not support priorities
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Haskell

Tracker
Notable:

int-to-float broken on ARM
Cabal Hell (with sandbox workaround): more
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https://ghc.haskell.org/trac/ghc/query?status=!closed&order=priority
https://ghc.haskell.org/trac/ghc/ticket/9125
http://softwaresimply.blogspot.com/2014/07/haskell-best-practices-for-avoiding.html
http://coldwa.st/e/blog/2013-08-20-Cabal-sandbox.html


Scala

Tracker
Notable: Listen to Paul . Phillips

tl;dr - issues with type inference, casting, and inheritance
tl;dr2 - issues have long turn-around time
Runar: more criticisms of Scala
Suggestions for improving Scala are abundant
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https://issues.scala-lang.org/secure/Dashboard.jspa
https://www.youtube.com/watch?v=TS1lpKBMkgg
http://www.slideshare.net/extempore/a-scala-corrections-library
http://functionaltalks.org/2014/03/31/runar-oli-bjarnason-functional-programming-is-terrible/


Go

Tracker
Notable

No support for generics
Extensibility issues
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https://code.google.com/p/go/issues/list
http://jozefg.bitbucket.org/posts/2013-08-23-leaving-go.html


Learning Resources

Picking up a new language takes some effort
Availability of channels to learn should be considered in
choosing a language
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Haskell

Learn You a Haskell for Great Good: site
Real World Haskell (dated): site, what’s outdated?
Parallel and Concurrent Programming in Haskell: site
Emacs Integration: site
Setting up a Project: site
Many, many research papers: index
What I Wish I Knew When Learning Haskell: site
Community Curated Learning Guides: site
Style Guide: site
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http://learnyouahaskell.com/
http://book.realworldhaskell.org/
http://stackoverflow.com/questions/23727768/which-part-of-real-world-haskell-is-now-obsolete-or-considered-bad-practise/23733494#23733494
http://chimera.labs.oreilly.com/books/1230000000929/index.html
https://github.com/serras/emacs-haskell-tutorial/blob/master/tutorial.md
http://taylor.fausak.me/2014/03/04/haskeleton-a-haskell-project-skeleton/
http://www.stephendiehl.com/posts/essential_haskell.html
http://dev.stephendiehl.com/hask/
https://github.com/bitemyapp/learnhaskell
https://github.com/tibbe/haskell-style-guide


Scala

Programming in Scala: site
Functional Programming in Scala: buy
Scala for the Impatient: buy
Twitter’s Scala School: site
Style Guide: site
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http://www.artima.com/pins1ed/
http://manning.com/bjarnason/
http://www.horstmann.com/scala/index.html
https://twitter.github.io/scala_school/
http://docs.scala-lang.org/style/


Go

Effective Go: site
How to Write Go: site
An Introduction to Programming in Go: site
Go Bootcamp: site
Style Guide: site
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http://golang.org/doc/effective_go.html
http://golang.org/doc/code.html
http://www.golang-book.com/
http://www.golangbootcamp.com/book/
https://code.google.com/p/go-wiki/wiki/CodeReviewComments


Recommendations: Go

An improvement over untyped languages, safety-wise
Lack of generics harms safety, abstraction, and reuse
Lack of package index/manager harms adoption
Feature-starved type system impedes use of modern patterns
Familiar patterns for OO/imperative programmers available
Fast compilation time is nice
My thoughts: the weakest of these three choices
Recommendation: use only to modify an existing (go) code
base
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Recommendation: Scala

Potent type system can lead to proofs of correctness in code
Pro: association with JVM means access to JVM libraries
Con: association with JVM carries over JVM problems
Developers can use OO patterns or adopt pure FP

Good: familiar, lower barrier to entry, a cleaner Java
Bad: mutable state abounds, coupling, need more trust in team
setting

Recommendation: great! Use especially if you need access to
JVM libraries
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Recommendations: Haskell

Potent type system can lead to proofs of correctness in code
Requires unlearning old patterns

Accelerated greatly by communal knowledge and breadth of
resources
With prior FP knowledge, takes a few days to get ramped up

Purity aligns development style more closely in team setting
Less room for errors, greater chance of correctness if it compiles
Applies to third-party libraries by extension

Great selection of libraries
Great for understanding link between proofs, mathematics. and
programming
Recommendation: excellent! prefer to Scala if JVM libraries
not needed
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http://engineering.imvu.com/2014/03/24/what-its-like-to-use-haskell/


What I Left Out

Industry use
Academic use
Community events
Notable libraries (property testing, async, web, etc.)
Runtime system comparison (GC style, performance, memory,
etc.)
Representative applications
Other powerful languages:

Ocaml, Idris, typed Erlang, typed Racket, Rust, Elm, Purescript
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Caveats

I specialize in Haskell
I have less knowledge of Go/Scala tools/resources

My biases:
Preference for non-optional. strong typing
Preference for functional programming
Preference for purity

My belief: FP + types -> (working code, sooner) & (easier
maintenance)
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Thank You!
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