
Comparing: Haskell, Scala, Go

Allele Dev (@queertypes)

August 28, 2014

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



Contact Me

Github: cabrera
Twitter: @queertypes
Blog: Read, Review, Refactor

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go

https://github.com/cabrera
https://twitter.com/cppcabrera
https://blog.cppcabrera.com/


Overview

Intent
Language summaries
Library ecosystem
Tools
Type systems
Known issues
Learning resources
Recommendations

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



Intent

To summarize options under consideration

To explore ecosystems and tooling for options
To compare the type system level guarantees and ability to
abstract/reuse
To document known issues
To point to resources to learn more
To offer strategic recommendations

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



Intent

To summarize options under consideration
To explore ecosystems and tooling for options

To compare the type system level guarantees and ability to
abstract/reuse
To document known issues
To point to resources to learn more
To offer strategic recommendations

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



Intent

To summarize options under consideration
To explore ecosystems and tooling for options
To compare the type system level guarantees and ability to
abstract/reuse

To document known issues
To point to resources to learn more
To offer strategic recommendations

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



Intent

To summarize options under consideration
To explore ecosystems and tooling for options
To compare the type system level guarantees and ability to
abstract/reuse
To document known issues

To point to resources to learn more
To offer strategic recommendations

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



Intent

To summarize options under consideration
To explore ecosystems and tooling for options
To compare the type system level guarantees and ability to
abstract/reuse
To document known issues
To point to resources to learn more

To offer strategic recommendations

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



Intent

To summarize options under consideration
To explore ecosystems and tooling for options
To compare the type system level guarantees and ability to
abstract/reuse
To document known issues
To point to resources to learn more
To offer strategic recommendations

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



Haskell

Appeared: 1990
Home page: current, WIP
Compiler: GHC
Latest release: 7.8.3, July 11, 2014
Native assembly generation
OS: Linux, Windows, OS X >=10.7, iOS, FreeBSD, Solaris
Platforms: x86, ARM
Paradigms: functional, non-strict
Notes: Renowned type system, concurrent/fast runtime, cryptol
Try: Haskell

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go

http://www.haskell.org/
http://new-www.haskell.org/
http://www.haskell.org/ghc/
http://www.cryptol.net/
http://tryhaskell.org/


Haskell

factorial :: Integral a => a -> a
factorial n

| n < 2 = 1
| otherwise = n * factorial (n - 1)

data Tree a =
Empty

| Branch a (Tree a) (Tree a) deriving (Show, Eq)

insert :: Ord a => Tree a -> a -> Tree a
insert Empty x = Branch x Empty Empty
insert (Branch v l r) x

| x <= v = Branch v (insert l x) r
| x > v = Branch v l (insert r x)

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



Scala

Appeared: 2004
Home page: site
Compiler: Scala
Latest release: 2.11.2, July 24, 2014
JVM byte code generation
OS: Anything that can host the JVM
Platforms: JVM
Paradigms: functional, object-oriented, strict
Notes: Effective type system, leverages JVM libraries, spark
Try: Scala

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go

http://www.scala-lang.org/
http://www.scala-lang.org/
https://spark.apache.org/
http://www.simplyscala.com/


Scala

sealed trait Tree[A]
case class Empty[A]() extends Tree[A]
case class Branch[A](v: A, l: Tree[A], r: Tree[A])

extends Tree[A]

object samples {
def insert[A <% Ordered[A]]

(t: Tree[A], x: A): Tree[A] = t match {
case Empty() => Branch(x, Empty(), Empty())
case Branch(v, l, r) =>

if (x <= v) Branch(v, insert(l, x), r)
else Branch(v, l, insert(r, x))

}
def factorial(n: Int): Int = {

if (n < 2) 1 else n * factorial (n - 1)
}

}
Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



Go

Appeared: 2009
Home page: site
Compiler: Go
Latest release: 1.3.1, August 13, 2014
Native assembly generation
OS: Linux, OS X, Windows, BSDs
Paradigms: imperative, object-oriented
Notes: Concurrency support, fast compilation, docker
Try: Go

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go

http://golang.org/
http://golang.org/
https://www.docker.com/
http://tour.golang.org/#1


Go

func factorial(n int) int {
if n < 2 {

return 1
}
return n * factorial(n - 1)

}

type Tree struct {
l, r *Tree
v interface{} // not type-safe; think (void *)

}

func insert(t Tree, x interface{}) Tree {
// not-even-going-to-try.jpg

}

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



At a Glance (compiler, rts, stdlib, tests)

Summary Haskell Scala Go

Appeared 1990 2004 2009
Latest Release
Date

July 2014 July 2014 August 2014

Platform x86, ARM* JVM x86
Paradigm Functional,

Imperative
OO,
Functional

OO,
Imperative

REPL Yes Yes No
LOC Main 394539 (Haskell) 268572

(Scala)
432018 (Go)

LOC Other 45760 (C) 29919 (Java) 151908 (C)

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



Library Support

A language without a breadth of a libraries is a language that is
rarely used
A language lacking package management infrastructure is
harder to adopt
An FFI is important to leverage works that came before

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



Haskell

Package index: Hackage/Stackage
Count: >6000
Package manager: cabal
Package format: Cabal file - example
FFI: Yes (C, JS)

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go

http://hackage.haskell.org/
http://www.stackage.org/
http://www.haskell.org/cabal/
https://github.com/ekmett/lens/blob/master/lens.cabal


Scala

Package index: Maven
Count: >80000 (mixed with Java)
Package manager: sbt, others
Package format: scala example
FFI: Yes (Java, JNI/C)

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go

http://search.maven.org/
http://www.scala-sbt.org/
https://github.com/scalaz/scalaz/blob/series/7.2.x/project/build.scala


Go

Package index: Go-Search
Count: >50000
Package manager: gopm (experimental)
Package format: .gopmfile (CONF)
FFI: Yes (C)

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go

http://go-search.org/
https://github.com/gpmgo/gopm


At a Glance

Packages Haskell Scala Go

Index Hackage Maven Go-Search
Count >6000 >80000

(+Java)
>50000

Manager cabal sbt gopm (exp.)
FFI C, JS Java, C C

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



Tooling

What editors are available?
How about IDEs?
Profiling?
Debugging?
Others?

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



Haskell

Editors
emacs + ghc-mod
vim + ghc-mod
EclipseFP

Profiling
GHC
criterion
ThreadScope
Heap Profiler
Test Coverage

Debugging: N/A
Others

Type search: Hoogle, Hayoo
Style: hlint

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go

http://www.mew.org/~kazu/proj/ghc-mod/en/
https://github.com/eagletmt/ghcmod-vim
http://eclipsefp.github.io/
https://www.haskell.org/ghc/docs/latest/html/users_guide/profiling.html
http://www.serpentine.com/criterion/tutorial.html
http://www.haskell.org/haskellwiki/ThreadScope
https://www.haskell.org/ghc/docs/latest/html/users_guide/hp2ps.html
http://www.haskell.org/haskellwiki/Haskell_program_coverage
http://www.haskell.org/hoogle/
http://hayoo.fh-wedel.de/
http://community.haskell.org/~ndm/hlint/


Scala

Editors
emacs + scala-mode2 + ensime
vim + vim-scala
Eclipse + Scala IDE

Profiling
ScalaMeter
Java HeapAudit

Debugging
Scala IDE

Others
Type search: Scalaex
Linting: Wart Remover, Scala Style

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go

https://github.com/hvesalai/scala-mode2
https://github.com/ensime/ensime-server
https://github.com/derekwyatt/vim-scala
http://scala-ide.org/
http://scalameter.github.io/
http://engineering.foursquare.com/2012/02/02/heapaudit-jvm-memory-profiler-for-the-real-world/
http://scala-ide.org/docs/current-user-doc/features/scaladebugger/index.html
http://scalex.org/
https://github.com/typelevel/wartremover
http://www.scalastyle.org/


Go

Editors
emacs + go-mode
vim + go-mode
Various IDEs, including IntelliJ

Profiling
pprof
go testing bench

Debugger
gdb

Others
Linting: govet

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go

http://golang.org/misc/emacs/go-mode.el?m=text
https://github.com/fatih/vim-go
http://geekmonkey.org/articles/20-comparison-of-ides-for-google-go
http://blog.golang.org/profiling-go-programs
http://dave.cheney.net/2013/06/30/how-to-write-benchmarks-in-go
https://golang.org/doc/gdb
https://godoc.org/code.google.com/p/go.tools/cmd/vet


Type Systems

A programming language is a frontend to its type system
A powerful type system is a proof engine

Curry-Howard Isomorphism

Proofs are the only means to rule out errors; testing cannot do
this

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go

https://blog.cppcabrera.com/posts/homotopy-summary.html


At a Glance

Type System
Haskell Scala Go

Analysis
Time

Static Static Static

Immutable
Default

Yes (all) No No

1st-Class
Functions

Yes Yes No

Type
Inference

Yes Yes* Poor

Evaluation
Model

Lazy Strict Strict

Modules Yes (weak) Yes (strong) Yes (strong)

Scala type inference will sometimes yield an Any
Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



At a Glance

Type System
Haskell Scala Go

Implicit
Casts

No Yes No*

Generics Yes Yes No
Higher Kinds Yes Yes No

Nullable
Values

No Yes Yes

Strong Type
Alias

newtype case class No

There’s a case where Go allows for implicit conversion

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go

http://dominik.honnef.co/posts/2012/12/go__on_implicit_type_conversions__type_identity_and_a_little_gotcha/


At a Glance

Type System Haskell Scala Go

Sum Types Yes Yes No
Product
Types

Yes Yes No

Recursive
Types

Yes Yes No

Pattern
Matching

Yes Yes No

Effect
Tracking

Yes Possible* No

Effect tracking can be achieved via scalaz, with a few caveats

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go

https://github.com/scalaz/scalaz


At a Glance

Type System Haskell Scala Go

Overloading Typeclass Implicits No
Records Yes Yes Yes
Subtyping No* Yes Yes
Dependent
Types

No* No* No

Subtyping impedes static analysis
Dependent types can be faked in type systems on par with
Haskell’s/Scala’s, within limits

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go

https://personal.cis.strath.ac.uk/conor.mcbride/pub/hasochism.pdf


Known Issues

Compilers aren’t free of defects
Adopting a language entails owning these defects and working
around quirks

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



At a Glance

Issues Haskell Scala* Go

Known 942 4772 1216
Critical 5 157 N/A
Major 42 443 N/A
FFI C, JS Java, C C

Scala issues include: compiler backend, collections, concurrent
lib, enumeration, macros, misc. compiler, optimizer, pattern
matcher, presentation compiler, quasiquotes, reflection, repl
Go issue tracker does not support priorities

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



Haskell

Tracker
Notable:

int-to-float broken on ARM
Cabal Hell (with sandbox workaround): more

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go

https://ghc.haskell.org/trac/ghc/query?status=!closed&order=priority
https://ghc.haskell.org/trac/ghc/ticket/9125
http://softwaresimply.blogspot.com/2014/07/haskell-best-practices-for-avoiding.html
http://coldwa.st/e/blog/2013-08-20-Cabal-sandbox.html


Scala

Tracker
Notable: Listen to Paul . Phillips

tl;dr - issues with type inference, casting, and inheritance
tl;dr2 - issues have long turn-around time
Runar: more criticisms of Scala
Suggestions for improving Scala are abundant

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go

https://issues.scala-lang.org/secure/Dashboard.jspa
https://www.youtube.com/watch?v=TS1lpKBMkgg
http://www.slideshare.net/extempore/a-scala-corrections-library
http://functionaltalks.org/2014/03/31/runar-oli-bjarnason-functional-programming-is-terrible/


Go

Tracker
Notable

No support for generics
Extensibility issues

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go

https://code.google.com/p/go/issues/list
http://jozefg.bitbucket.org/posts/2013-08-23-leaving-go.html


Learning Resources

Picking up a new language takes some effort
Availability of channels to learn should be considered in
choosing a language

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



Haskell

Learn You a Haskell for Great Good: site
Real World Haskell (dated): site, what’s outdated?
Parallel and Concurrent Programming in Haskell: site
Emacs Integration: site
Setting up a Project: site
Many, many research papers: index
What I Wish I Knew When Learning Haskell: site
Community Curated Learning Guides: site
Style Guide: site

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go

http://learnyouahaskell.com/
http://book.realworldhaskell.org/
http://stackoverflow.com/questions/23727768/which-part-of-real-world-haskell-is-now-obsolete-or-considered-bad-practise/23733494#23733494
http://chimera.labs.oreilly.com/books/1230000000929/index.html
https://github.com/serras/emacs-haskell-tutorial/blob/master/tutorial.md
http://taylor.fausak.me/2014/03/04/haskeleton-a-haskell-project-skeleton/
http://www.stephendiehl.com/posts/essential_haskell.html
http://dev.stephendiehl.com/hask/
https://github.com/bitemyapp/learnhaskell
https://github.com/tibbe/haskell-style-guide


Scala

Programming in Scala: site
Functional Programming in Scala: buy
Scala for the Impatient: buy
Twitter’s Scala School: site
Style Guide: site

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go

http://www.artima.com/pins1ed/
http://manning.com/bjarnason/
http://www.horstmann.com/scala/index.html
https://twitter.github.io/scala_school/
http://docs.scala-lang.org/style/


Go

Effective Go: site
How to Write Go: site
An Introduction to Programming in Go: site
Go Bootcamp: site
Style Guide: site

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go

http://golang.org/doc/effective_go.html
http://golang.org/doc/code.html
http://www.golang-book.com/
http://www.golangbootcamp.com/book/
https://code.google.com/p/go-wiki/wiki/CodeReviewComments


Recommendations: Go

An improvement over untyped languages, safety-wise
Lack of generics harms safety, abstraction, and reuse
Lack of package index/manager harms adoption
Feature-starved type system impedes use of modern patterns
Familiar patterns for OO/imperative programmers available
Fast compilation time is nice
My thoughts: the weakest of these three choices
Recommendation: use only to modify an existing (go) code
base

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



Recommendation: Scala

Potent type system can lead to proofs of correctness in code
Pro: association with JVM means access to JVM libraries
Con: association with JVM carries over JVM problems
Developers can use OO patterns or adopt pure FP

Good: familiar, lower barrier to entry, a cleaner Java
Bad: mutable state abounds, coupling, need more trust in team
setting

Recommendation: great! Use especially if you need access to
JVM libraries

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



Recommendations: Haskell

Potent type system can lead to proofs of correctness in code
Requires unlearning old patterns

Accelerated greatly by communal knowledge and breadth of
resources
With prior FP knowledge, takes a few days to get ramped up

Purity aligns development style more closely in team setting
Less room for errors, greater chance of correctness if it compiles
Applies to third-party libraries by extension

Great selection of libraries
Great for understanding link between proofs, mathematics. and
programming
Recommendation: excellent! prefer to Scala if JVM libraries
not needed

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go

http://engineering.imvu.com/2014/03/24/what-its-like-to-use-haskell/


What I Left Out

Industry use
Academic use
Community events
Notable libraries (property testing, async, web, etc.)
Runtime system comparison (GC style, performance, memory,
etc.)
Representative applications
Other powerful languages:

Ocaml, Idris, typed Erlang, typed Racket, Rust, Elm, Purescript

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



Caveats

I specialize in Haskell
I have less knowledge of Go/Scala tools/resources

My biases:
Preference for non-optional. strong typing
Preference for functional programming
Preference for purity

My belief: FP + types -> (working code, sooner) & (easier
maintenance)

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go



Thank You!

Allele Dev (@queertypes) Comparing: Haskell, Scala, Go


