
An Introduction to Haskell, Type Systems, and
Functional Programming

Allele Dev (@queertypes)

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

{-# LANGUAGE OverloadedStrings #-}
import Data.Text (Text)

meta :: [(Text, Text)]
meta = [

("Author", "Allele Dev")
, ("Email", "allele.dev@gmail.com")
, ("Objectives", "Introduce: Haskell, Types, FP")
]

main :: IO ()
main = print meta

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Contact Me!

Github: cabrera
Twitter: @cppcabrera
Blog: Read, Review, Refactor

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

https://github.com/cabrera
https://twitter.com/cppcabrera
https://blog.cppcabrera.com/

Goal

Let’s use the wisdom of more than four decades worth of
programming language theory to write better software.

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://en.wikipedia.org/wiki/Programming_language_theory

Goal: What Will This Entail?

Haskell as a medium

Just enough Haskell
Just enough myth-smashing
Just enough evidence

Just enough functional programming
Just enough type theory
A sprinkle of category theory

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskell.org/haskellwiki/Haskell

Goal: What Will This Entail?

Haskell as a medium
Just enough Haskell

Just enough myth-smashing
Just enough evidence

Just enough functional programming
Just enough type theory
A sprinkle of category theory

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskell.org/haskellwiki/Haskell

Goal: What Will This Entail?

Haskell as a medium
Just enough Haskell
Just enough myth-smashing

Just enough evidence

Just enough functional programming
Just enough type theory
A sprinkle of category theory

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskell.org/haskellwiki/Haskell

Goal: What Will This Entail?

Haskell as a medium
Just enough Haskell
Just enough myth-smashing
Just enough evidence

Just enough functional programming
Just enough type theory
A sprinkle of category theory

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskell.org/haskellwiki/Haskell

Goal: What Will This Entail?

Haskell as a medium
Just enough Haskell
Just enough myth-smashing
Just enough evidence

Just enough functional programming

Just enough type theory
A sprinkle of category theory

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskell.org/haskellwiki/Haskell

Goal: What Will This Entail?

Haskell as a medium
Just enough Haskell
Just enough myth-smashing
Just enough evidence

Just enough functional programming
Just enough type theory

A sprinkle of category theory

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskell.org/haskellwiki/Haskell

Goal: What Will This Entail?

Haskell as a medium
Just enough Haskell
Just enough myth-smashing
Just enough evidence

Just enough functional programming
Just enough type theory
A sprinkle of category theory

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskell.org/haskellwiki/Haskell

An Aside on Typed FP Languages

Haskell is only a medium in this presentation

Other languages in a similar vein (with similar capacities)
include:

Scala: Typed-FP/OO hybrid on JVM
F#: Typed-FP on .NET
Ocaml: Typed-FP, ML-derived
Standard ML: Typed-FP, ML-derived

And others, still: Elm, Idris, Agda

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.scala-lang.org/
http://fsharp.org/
http://ocaml.org/
http://en.wikipedia.org/wiki/Standard_ML
http://elm-lang.org/
http://www.idris-lang.org/
http://wiki.portal.chalmers.se/agda/pmwiki.php

An Aside on Typed FP Languages

Haskell is only a medium in this presentation
Other languages in a similar vein (with similar capacities)
include:

Scala: Typed-FP/OO hybrid on JVM
F#: Typed-FP on .NET
Ocaml: Typed-FP, ML-derived
Standard ML: Typed-FP, ML-derived

And others, still: Elm, Idris, Agda

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.scala-lang.org/
http://fsharp.org/
http://ocaml.org/
http://en.wikipedia.org/wiki/Standard_ML
http://elm-lang.org/
http://www.idris-lang.org/
http://wiki.portal.chalmers.se/agda/pmwiki.php

An Aside on Typed FP Languages

Haskell is only a medium in this presentation
Other languages in a similar vein (with similar capacities)
include:

Scala: Typed-FP/OO hybrid on JVM

F#: Typed-FP on .NET
Ocaml: Typed-FP, ML-derived
Standard ML: Typed-FP, ML-derived

And others, still: Elm, Idris, Agda

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.scala-lang.org/
http://fsharp.org/
http://ocaml.org/
http://en.wikipedia.org/wiki/Standard_ML
http://elm-lang.org/
http://www.idris-lang.org/
http://wiki.portal.chalmers.se/agda/pmwiki.php

An Aside on Typed FP Languages

Haskell is only a medium in this presentation
Other languages in a similar vein (with similar capacities)
include:

Scala: Typed-FP/OO hybrid on JVM
F#: Typed-FP on .NET

Ocaml: Typed-FP, ML-derived
Standard ML: Typed-FP, ML-derived

And others, still: Elm, Idris, Agda

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.scala-lang.org/
http://fsharp.org/
http://ocaml.org/
http://en.wikipedia.org/wiki/Standard_ML
http://elm-lang.org/
http://www.idris-lang.org/
http://wiki.portal.chalmers.se/agda/pmwiki.php

An Aside on Typed FP Languages

Haskell is only a medium in this presentation
Other languages in a similar vein (with similar capacities)
include:

Scala: Typed-FP/OO hybrid on JVM
F#: Typed-FP on .NET
Ocaml: Typed-FP, ML-derived

Standard ML: Typed-FP, ML-derived

And others, still: Elm, Idris, Agda

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.scala-lang.org/
http://fsharp.org/
http://ocaml.org/
http://en.wikipedia.org/wiki/Standard_ML
http://elm-lang.org/
http://www.idris-lang.org/
http://wiki.portal.chalmers.se/agda/pmwiki.php

An Aside on Typed FP Languages

Haskell is only a medium in this presentation
Other languages in a similar vein (with similar capacities)
include:

Scala: Typed-FP/OO hybrid on JVM
F#: Typed-FP on .NET
Ocaml: Typed-FP, ML-derived
Standard ML: Typed-FP, ML-derived

And others, still: Elm, Idris, Agda

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.scala-lang.org/
http://fsharp.org/
http://ocaml.org/
http://en.wikipedia.org/wiki/Standard_ML
http://elm-lang.org/
http://www.idris-lang.org/
http://wiki.portal.chalmers.se/agda/pmwiki.php

An Aside on Typed FP Languages

Haskell is only a medium in this presentation
Other languages in a similar vein (with similar capacities)
include:

Scala: Typed-FP/OO hybrid on JVM
F#: Typed-FP on .NET
Ocaml: Typed-FP, ML-derived
Standard ML: Typed-FP, ML-derived

And others, still: Elm, Idris, Agda

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.scala-lang.org/
http://fsharp.org/
http://ocaml.org/
http://en.wikipedia.org/wiki/Standard_ML
http://elm-lang.org/
http://www.idris-lang.org/
http://wiki.portal.chalmers.se/agda/pmwiki.php

Why Haskell as a Medium?

Personal bias: I am fond of Haskell

Purely functional: forces one to solve problems functionally
Very clean syntax
Great resources available for free, everywhere
Runs on: Windows, Linux, Mac OS X, iOS, Android

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Why Haskell as a Medium?

Personal bias: I am fond of Haskell
Purely functional: forces one to solve problems functionally

Very clean syntax
Great resources available for free, everywhere
Runs on: Windows, Linux, Mac OS X, iOS, Android

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Why Haskell as a Medium?

Personal bias: I am fond of Haskell
Purely functional: forces one to solve problems functionally
Very clean syntax

Great resources available for free, everywhere
Runs on: Windows, Linux, Mac OS X, iOS, Android

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Why Haskell as a Medium?

Personal bias: I am fond of Haskell
Purely functional: forces one to solve problems functionally
Very clean syntax
Great resources available for free, everywhere

Runs on: Windows, Linux, Mac OS X, iOS, Android

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Why Haskell as a Medium?

Personal bias: I am fond of Haskell
Purely functional: forces one to solve problems functionally
Very clean syntax
Great resources available for free, everywhere
Runs on: Windows, Linux, Mac OS X, iOS, Android

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Overview

A tour of Haskell

Syntax
Abstraction facilities
Modules
Myths, ecosystem, and related alternatives

Why functional programming mattters
Why types matter

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Overview

A tour of Haskell
Syntax

Abstraction facilities
Modules
Myths, ecosystem, and related alternatives

Why functional programming mattters
Why types matter

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Overview

A tour of Haskell
Syntax
Abstraction facilities

Modules
Myths, ecosystem, and related alternatives

Why functional programming mattters
Why types matter

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Overview

A tour of Haskell
Syntax
Abstraction facilities
Modules

Myths, ecosystem, and related alternatives

Why functional programming mattters
Why types matter

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Overview

A tour of Haskell
Syntax
Abstraction facilities
Modules
Myths, ecosystem, and related alternatives

Why functional programming mattters
Why types matter

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Overview

A tour of Haskell
Syntax
Abstraction facilities
Modules
Myths, ecosystem, and related alternatives

Why functional programming mattters

Why types matter

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Overview

A tour of Haskell
Syntax
Abstraction facilities
Modules
Myths, ecosystem, and related alternatives

Why functional programming mattters
Why types matter

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

What’s Haskell?

A statically-typed, pure, lazy, functional programming
language
At least 24 years old (Report 1.0 released on April 1, 1990)

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Definitions

Statically-typed: Type checks occur at compile-time

pure: side-effects are carefully isolated
lazy: function arguments are evaluated only when needed
functional: programs as composition of functions

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Definitions

Statically-typed: Type checks occur at compile-time
pure: side-effects are carefully isolated

lazy: function arguments are evaluated only when needed
functional: programs as composition of functions

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Definitions

Statically-typed: Type checks occur at compile-time
pure: side-effects are carefully isolated
lazy: function arguments are evaluated only when needed

functional: programs as composition of functions

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Definitions

Statically-typed: Type checks occur at compile-time
pure: side-effects are carefully isolated
lazy: function arguments are evaluated only when needed
functional: programs as composition of functions

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

What Does it Look Like?

-- Hello.hs
main = print "Hello, World"

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

What Does it Look Like?

-- Hello.hs
hello :: String
hello = "Hello, world"

main = print hello

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

How Do I Make it Run?

$ ghc Hello
[1 of 1] Compiling Main (Hello.hs, Hello.o)
Linking Hello ...
$./Hello
"Hello, world!"

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

How Do I Make it Run? (interactive version!)

$ ghci Hello
ghci Hello
GHCi, version 7.8.2: http://www.haskell.org/ghc/
Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
[1 of 1] Compiling Main (Hello.hs, ...)
Ok, modules loaded: Main.
*Main> main
"Hello, world!"

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Literals

Nums/Ints/Integers: 1

Fractionals/Floats: 1.0
Chars: 'a'
Booleans: False, True
Lists: [1, 2, 3], "Char List" – homogenous

“A list” :: [Char] == String

Tuples: (1, ‘a’, [False, True]) – not homogenous

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Literals

Nums/Ints/Integers: 1
Fractionals/Floats: 1.0

Chars: 'a'
Booleans: False, True
Lists: [1, 2, 3], "Char List" – homogenous

“A list” :: [Char] == String

Tuples: (1, ‘a’, [False, True]) – not homogenous

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Literals

Nums/Ints/Integers: 1
Fractionals/Floats: 1.0
Chars: 'a'

Booleans: False, True
Lists: [1, 2, 3], "Char List" – homogenous

“A list” :: [Char] == String

Tuples: (1, ‘a’, [False, True]) – not homogenous

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Literals

Nums/Ints/Integers: 1
Fractionals/Floats: 1.0
Chars: 'a'
Booleans: False, True

Lists: [1, 2, 3], "Char List" – homogenous

“A list” :: [Char] == String

Tuples: (1, ‘a’, [False, True]) – not homogenous

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Literals

Nums/Ints/Integers: 1
Fractionals/Floats: 1.0
Chars: 'a'
Booleans: False, True
Lists: [1, 2, 3], "Char List" – homogenous

“A list” :: [Char] == String

Tuples: (1, ‘a’, [False, True]) – not homogenous

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Literals

Nums/Ints/Integers: 1
Fractionals/Floats: 1.0
Chars: 'a'
Booleans: False, True
Lists: [1, 2, 3], "Char List" – homogenous

“A list” :: [Char] == String

Tuples: (1, ‘a’, [False, True]) – not homogenous

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Literals

Nums/Ints/Integers: 1
Fractionals/Floats: 1.0
Chars: 'a'
Booleans: False, True
Lists: [1, 2, 3], "Char List" – homogenous

“A list” :: [Char] == String

Tuples: (1, ‘a’, [False, True]) – not homogenous

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Functions

factorial :: Num a => a -> a
factorial 0 = 1
factorial n = n * factorial (n - 1)

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Functions

-- function_name :: (type contraints) =>
-- arg_type1 -> arg_type2 -> return type
factorial :: Num a => a -> a
factorial 0 = 1
factorial n = n * factorial (n - 1)

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Functions

factorial :: Num a => a -> a
-- function_name arg1 arg2 = implementation
factorial 0 = 1
factorial n = n * factorial (n - 1)

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

A Brief Aside

Learn to read type signatures

Extremely helpful early investment w/ Haskell
If in doubt, inspect the types!
Open GHCi, and ask away:

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

A Brief Aside

Learn to read type signatures
Extremely helpful early investment w/ Haskell

If in doubt, inspect the types!
Open GHCi, and ask away:

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

A Brief Aside

Learn to read type signatures
Extremely helpful early investment w/ Haskell
If in doubt, inspect the types!

Open GHCi, and ask away:

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

A Brief Aside

Learn to read type signatures
Extremely helpful early investment w/ Haskell
If in doubt, inspect the types!
Open GHCi, and ask away:

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Type Inspection with GHCi

> :t 1

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Type Inspection with GHCi

> :t 1
1 :: Num a => a

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Type Inspection with GHCi

> :t 1.0

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Type Inspection with GHCi

> :t 1.0
1.0 :: Fractional a => a

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Type Inspection with GHCi

> :t [1, 2, 3]

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Type Inspection with GHCi

> :t [1, 2, 3]
[1, 2, 3] :: Num t => [t]

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Type Inspection with GHCi

> :t (1, 'a', False)

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Type Inspection with GHCi

> :t (1, 'a', False)
(1, 'a', False) :: Num t => (t, Char, Bool)

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Type Inspection with GHCi

> :t map

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Type Inspection with GHCi

> :t map
map :: (a -> b) -> [a] -> [b]

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Type Inspection with GHCi

> :t (+)

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Type Inspection with GHCi

> :t (+)
(+) :: Num a => a -> a -> a

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

A Note on Operators

All operators are just built-in functions

It’s common to define custom infix ops in Haskell

<*> appears with Applicatives
. function composition
>>= sequencing

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

A Note on Operators

All operators are just built-in functions
It’s common to define custom infix ops in Haskell

<*> appears with Applicatives
. function composition
>>= sequencing

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

A Note on Operators

All operators are just built-in functions
It’s common to define custom infix ops in Haskell

<*> appears with Applicatives

. function composition
>>= sequencing

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

A Note on Operators

All operators are just built-in functions
It’s common to define custom infix ops in Haskell

<*> appears with Applicatives
. function composition

>>= sequencing

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

A Note on Operators

All operators are just built-in functions
It’s common to define custom infix ops in Haskell

<*> appears with Applicatives
. function composition
>>= sequencing

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Golden Rule About Haskell Functions

Every function takes just one argument

All arguments are automatically curried
(or Schonfinkled – a story for another time)

Use this to your advantage

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Golden Rule About Haskell Functions

Every function takes just one argument
All arguments are automatically curried

(or Schonfinkled – a story for another time)

Use this to your advantage

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Golden Rule About Haskell Functions

Every function takes just one argument
All arguments are automatically curried
(or Schonfinkled – a story for another time)

Use this to your advantage

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Golden Rule About Haskell Functions

Every function takes just one argument
All arguments are automatically curried
(or Schonfinkled – a story for another time)

Use this to your advantage

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Type-inspection Search Engine: hoogle

Haskell supports a type-signature search engine

Looking for a particular function, use hoogle

Can also be installed in ghci

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskell.org/hoogle/
http://www.haskell.org/haskellwiki/GHC/GHCi#Hoogle

Type-inspection Search Engine: hoogle

Haskell supports a type-signature search engine
Looking for a particular function, use hoogle

Can also be installed in ghci

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskell.org/hoogle/
http://www.haskell.org/haskellwiki/GHC/GHCi#Hoogle

Type-inspection Search Engine: hoogle

Haskell supports a type-signature search engine
Looking for a particular function, use hoogle

Can also be installed in ghci

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskell.org/hoogle/
http://www.haskell.org/haskellwiki/GHC/GHCi#Hoogle

Curry in Action

> :t (+)

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Curry in Action

> :t (+)
(+) :: Num a => a -> a -> a

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Curry in Action

> :t (+2)

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Curry in Action

> :t (+2)
(+2) :: Num a => a -> a

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Curry in Action

> :t (+2)
(+2) :: Num a => a -> a
> -- (+2) is a valid term; a "section",

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Curry in Action

> :t (+2)
(+2) :: Num a => a -> a
> -- (+2) is a valid term; a "section",
> -- a partially applied function

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Syntax for Defining Functions

Type signature

Equations
Guards
Case expression and pattern matching

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Syntax for Defining Functions

Type signature
Equations

Guards
Case expression and pattern matching

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Syntax for Defining Functions

Type signature
Equations
Guards

Case expression and pattern matching

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Syntax for Defining Functions

Type signature
Equations
Guards
Case expression and pattern matching

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Type Signatures

Rarely required, due to powerful type inference engine

Serves more as compiler-checked documentation of intent

Can also aid Type Driven Development

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Type Signatures

Rarely required, due to powerful type inference engine
Serves more as compiler-checked documentation of intent

Can also aid Type Driven Development

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Type Signatures

Rarely required, due to powerful type inference engine
Serves more as compiler-checked documentation of intent

Can also aid Type Driven Development

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Type Signature Examples

id :: a -> a

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Type Signature Examples

map :: (a -> b) -> [a] -> [b]

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Type Signature Examples

filter :: (a -> Bool) -> [a] -> [a]

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Type Signature Examples

(+) :: Num a => a -> a -> a

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Type Signature Examples

(<) :: Ord a => a -> a -> Bool

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Type Signature Examples

(==) :: Eq a => a -> a -> Bool

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Type Signature Examples

(/=) :: Eq a => a -> a -> Bool

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Equational Functions

map _ [] = []
map f (x:xs) = f x : map f xs

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Guarded Functions

factorial n
| n <= 0 = 1
| otherwise = n * factorial (n - 1)

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Case Expressions

describeList :: [a] -> String
describeList xs = case xs of

[] -> "empty"
[_] -> "singleton"
_ -> "longer list"

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Where: Inline Definitions After the Fact

validArea :: (Ord a, Num a) => a -> a -> Bool
validArea x y

| area x y >= 0 = True
| otherwise = False
where area x' y' = x' * y'

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Let-In: Inline Definitions as a Prologue

analyzeNumber :: (Ord a, Num a) => a -> Bool
analyzeNumber n =

let analyze n' = (n' * n')
reasonable n' = analyze n' > 2

in
reasonable n

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

As Patterns: Named Capture of the Whole in a Pattern
Match

starter :: String -> String
starter "" = "empty"
starter all_xs@(x:_) = all_xs ++ " starts with " ++ [x]

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

A Little More Syntax: Abstraction

We can now define functions

Let’s define our own types!

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

A Little More Syntax: Abstraction

We can now define functions
Let’s define our own types!

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Abstract Data Types: Simple

-- week.hs
data Weekday =

Monday
| Tuesday
| Wednesday
| Thursday
| Friday
| Saturday
| Sunday deriving (Show, Eq)

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Simple: Sum Types, Deriving

Most typed-FP languages allow for sum types

discriminated unions checked at compile-time

deriving: compiler automatically implements certain
interfaces

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Simple: Sum Types, Deriving

Most typed-FP languages allow for sum types
discriminated unions checked at compile-time

deriving: compiler automatically implements certain
interfaces

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Simple: Sum Types, Deriving

Most typed-FP languages allow for sum types
discriminated unions checked at compile-time

deriving: compiler automatically implements certain
interfaces

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Simple Weekday

-- week.hs
next :: Weekday -> Weekday
next day = case day of

Tuesday -> Wednesday
Wednesday -> Thursday
Thursday -> Friday
Friday -> Saturday
Saturday -> Sunday
Sunday -> Monday

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Simple Types in Action

$ ghci -Wall week
GHCi, version 7.8.2: http://www.haskell.org/ghc/
Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
[1 of 1] Compiling Main (week.hs, interpreted)

week.hs:12:12: Warning:
Pattern match(es) are non-exhaustive
In a case alternative: Patterns not matched: Monday
Ok, modules loaded: Main.

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Simple Types in Action

Compiler knows how to check for all cases in a sum type

It just told us we forgot about Monday

We’re human! Sometimes we forget what day of the week we’re
on
Extremely useful tool for refactoring

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Simple Types in Action

Compiler knows how to check for all cases in a sum type
It just told us we forgot about Monday

We’re human! Sometimes we forget what day of the week we’re
on
Extremely useful tool for refactoring

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Simple Types in Action

Compiler knows how to check for all cases in a sum type
It just told us we forgot about Monday

We’re human! Sometimes we forget what day of the week we’re
on

Extremely useful tool for refactoring

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Simple Types in Action

Compiler knows how to check for all cases in a sum type
It just told us we forgot about Monday

We’re human! Sometimes we forget what day of the week we’re
on
Extremely useful tool for refactoring

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Simple Types: Deriving

deriving: ask compiler to auto-implement an interface

For simple interfaces/typeclasses, this is possible
Simple includes: printing, equality, ordering, enumeration, . . .

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Simple Types: Deriving

deriving: ask compiler to auto-implement an interface
For simple interfaces/typeclasses, this is possible

Simple includes: printing, equality, ordering, enumeration, . . .

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Simple Types: Deriving

deriving: ask compiler to auto-implement an interface
For simple interfaces/typeclasses, this is possible
Simple includes: printing, equality, ordering, enumeration, . . .

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Simple Types: Records

data Person = Person
{ name :: String
, age :: Int
}

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Simple Types: Records

> Person "Lantern" 27
Person "Lantern" 27
> name (Person "Lantern" 27)
"Lantern"
> let newPerson p = Person $ name p $ (age p) + 1
> newPerson $ Person "Lantern" 27
Person "Lantern" 28

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Simple Types: Type Parameters

-- A type that already exists
data Maybe a =

Just a
| Nothing deriving (Show, Eq)

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Simple Types: Recursive Types

data List' a =
Nil
| Cons a (List' a) deriving (Show, Eq)

data Tree a =
EmptyTree
| Node a (Tree a) (Tree a) deriving (Show, Eq)

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Functions on Recursive Types: Lists

head' :: List' a -> Maybe a
head' Nil = Nothing
head' (Cons x rest) = Just x

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Functions on Recursive Types: Lists

> Cons 1 $ Cons 2 $ Nil

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Functions on Recursive Types: Lists

> Cons 1 $ Cons 2 $ Nil
Cons 1 (Cons 2 (Nil)) :: Num a => List' a

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Functions on Recursive Types: Lists

> Nil

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Functions on Recursive Types: Lists

> Nil
Nil :: List' a

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Functions on Recursive Types: Lists

> head' Nil

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Functions on Recursive Types: Lists

> head' Nil
Nothing :: Maybe a

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Functions on Recursive Types: Lists

> head' $ Cons 1 $ Nil

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Functions on Recursive Types: Lists

> head' $ Cons 1 $ Nil
Cons 1 :: Num a => Maybe a

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Functions on Recursive Types: Trees

insert :: Ord a => a -> Tree a -> Tree a
insert v EmptyTree = Node v EmptyTree EmptyTree
insert v (Node n l r)

| v == n = Node v l r -- create identical node in place
| v < n = Node n (insert v l) r
| v > n = Node n l (insert v r)

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Functions on Recursive Types: Trees

> EmptyTree

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Functions on Recursive Types: Trees

> EmptyTree
EmptyTree :: Tree a

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Functions on Recursive Types: Trees

> Node 2 EmptyTree EmptyTree

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Functions on Recursive Types: Trees

> Node 2 EmptyTree EmptyTree
Node 2 EmptyTree EmptyTree :: Num a => Tree a

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Functions on Recursive Types: Trees

> let example = Node 2 EmptyTree EmptyTree

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Functions on Recursive Types: Trees

> let example = Node 2 EmptyTree EmptyTree
> insert 1 example

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Functions on Recursive Types: Trees

> let example = Node 2 EmptyTree EmptyTree
> insert 1 example
Node 2 (Node 1 EmptyTree EmptyTree) EmptyTree

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Functions on Recursive Types: Trees

> let example = Node 2 EmptyTree EmptyTree
> insert 1 example
Node 2 (Node 1 EmptyTree EmptyTree) EmptyTree
> insert 2 example

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Functions on Recursive Types: Trees

> let example = Node 2 EmptyTree EmptyTree
> insert 1 example
Node 2 (Node 1 EmptyTree EmptyTree) EmptyTree
> insert 2 example
Node 2 EmptyTree EmptyTree

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Functions on Recursive Types: Trees

> let example = Node 2 EmptyTree EmptyTree
> insert 1 example
Node 2 (Node 1 EmptyTree EmptyTree) EmptyTree
> insert 2 example
Node 2 EmptyTree EmptyTree
> insert 3 example

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Functions on Recursive Types: Trees

> let example = Node 2 EmptyTree EmptyTree
> insert 1 example
Node 2 (Node 1 EmptyTree EmptyTree) EmptyTree
> insert 2 example
Node 2 EmptyTree EmptyTree
> insert 3 example
Node 2 EmptyTree (Node 3 EmptyTree EmptyTree)

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Functions on Recursive Types: Trees (Chained)

> let example = Node 2 EmptyTree EmptyTree

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Functions on Recursive Types: Trees (Chained)

> let example = Node 2 EmptyTree EmptyTree
> insert 1 $ insert 3 $ insert 4 $ insert 5 example

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Functions on Recursive Types: Trees (Chained)

> let example = Node 2 EmptyTree EmptyTree
> insert 1 $ insert 3 $ insert 4 $ insert 5 example
Node 2 (Node 1 EmptyTree EmptyTree)

(Node 5
(Node 4 (Node 3 EmptyTree EmptyTree)
EmptyTree)

EmptyTree)
> -- pretty-printing is my doing
> -- that it prints at all is because of 'deriving (Show)'

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Typeclasses: Interfaces for Haskell

Typeclasses allow one to:

Define type constraints
Define what functions a type must implement

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Typeclasses: Interfaces for Haskell

Typeclasses allow one to:
Define type constraints

Define what functions a type must implement

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Typeclasses: Interfaces for Haskell

Typeclasses allow one to:
Define type constraints
Define what functions a type must implement

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Example: What a Typeclass Looks Like

class Eq' a where
-- point-free default impls.
-- provide one of (==') or (/=')
(===) :: a -> a -> Bool
(/==) :: a -> a -> Bool
l === r = not $ l /== r
l /== r = not $ l === r

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Example: A Manual Typeclass Instance for Weekdays

instance Eq' Weekday where
Monday ==' Monday = True
Tuesday ==' Tuesday = True
-- ...
Sunday ==' Sunday = True
_ ==' _ = False

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Modules at Last

-- Geometry/Circle.hs
module Geometry.Circle
(area
, perimeter
) where

-- the most accurate; more accurate than Prelude.pi
pi' :: Float
pi' = 3.1415926

area :: Float -> Float
area r = pi' * r**2

perimeter :: Float -> Float
perimeter r = 2 * pi' * r

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Using a Module

module Main where
import Geometry.Circle

main = print $ area 10

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Using a Module

module Main where

-- useful for avoiding name collisions
import qualified Geometry.Circle as GC

main = print $ GC.area 10

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Mythology: Purity => Useless

“Haskell is useless”: link

“Haskell is the world’s finest imperative language.” – SPJ

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.reddit.com/comments/1pstav
http://research.microsoft.com/en-us/um/people/simonpj/papers/marktoberdorf/

Mythology: Purity => Useless

“Haskell is useless”: link
“Haskell is the world’s finest imperative language.” – SPJ

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.reddit.com/comments/1pstav
http://research.microsoft.com/en-us/um/people/simonpj/papers/marktoberdorf/

Mythology: GC + Functional => Slow

Performance concerns?

The obvious toy benchmarks
Haskell Warp vs. Nginx
Haskell SDN Controller
Haskell on a GPU
Haskell Parallel Arrays

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://benchmarksgame.alioth.debian.org/u64q/benchmark.php?test=all&lang=ghc&lang2=java&data=u64q
http://aosabook.org/en/posa/warp.html
http://www.reddit.com/r/haskell/comments/1k6fsl/mio_a_highperformance_multicore_io_manager_for/
http://hackage.haskell.org/package/accelerate
http://www.haskell.org/haskellwiki/Numeric_Haskell:_A_Repa_Tutorial

Mythology: GC + Functional => Slow

Performance concerns?
The obvious toy benchmarks

Haskell Warp vs. Nginx
Haskell SDN Controller
Haskell on a GPU
Haskell Parallel Arrays

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://benchmarksgame.alioth.debian.org/u64q/benchmark.php?test=all&lang=ghc&lang2=java&data=u64q
http://aosabook.org/en/posa/warp.html
http://www.reddit.com/r/haskell/comments/1k6fsl/mio_a_highperformance_multicore_io_manager_for/
http://hackage.haskell.org/package/accelerate
http://www.haskell.org/haskellwiki/Numeric_Haskell:_A_Repa_Tutorial

Mythology: GC + Functional => Slow

Performance concerns?
The obvious toy benchmarks
Haskell Warp vs. Nginx

Haskell SDN Controller
Haskell on a GPU
Haskell Parallel Arrays

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://benchmarksgame.alioth.debian.org/u64q/benchmark.php?test=all&lang=ghc&lang2=java&data=u64q
http://aosabook.org/en/posa/warp.html
http://www.reddit.com/r/haskell/comments/1k6fsl/mio_a_highperformance_multicore_io_manager_for/
http://hackage.haskell.org/package/accelerate
http://www.haskell.org/haskellwiki/Numeric_Haskell:_A_Repa_Tutorial

Mythology: GC + Functional => Slow

Performance concerns?
The obvious toy benchmarks
Haskell Warp vs. Nginx
Haskell SDN Controller

Haskell on a GPU
Haskell Parallel Arrays

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://benchmarksgame.alioth.debian.org/u64q/benchmark.php?test=all&lang=ghc&lang2=java&data=u64q
http://aosabook.org/en/posa/warp.html
http://www.reddit.com/r/haskell/comments/1k6fsl/mio_a_highperformance_multicore_io_manager_for/
http://hackage.haskell.org/package/accelerate
http://www.haskell.org/haskellwiki/Numeric_Haskell:_A_Repa_Tutorial

Mythology: GC + Functional => Slow

Performance concerns?
The obvious toy benchmarks
Haskell Warp vs. Nginx
Haskell SDN Controller
Haskell on a GPU

Haskell Parallel Arrays

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://benchmarksgame.alioth.debian.org/u64q/benchmark.php?test=all&lang=ghc&lang2=java&data=u64q
http://aosabook.org/en/posa/warp.html
http://www.reddit.com/r/haskell/comments/1k6fsl/mio_a_highperformance_multicore_io_manager_for/
http://hackage.haskell.org/package/accelerate
http://www.haskell.org/haskellwiki/Numeric_Haskell:_A_Repa_Tutorial

Mythology: GC + Functional => Slow

Performance concerns?
The obvious toy benchmarks
Haskell Warp vs. Nginx
Haskell SDN Controller
Haskell on a GPU
Haskell Parallel Arrays

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://benchmarksgame.alioth.debian.org/u64q/benchmark.php?test=all&lang=ghc&lang2=java&data=u64q
http://aosabook.org/en/posa/warp.html
http://www.reddit.com/r/haskell/comments/1k6fsl/mio_a_highperformance_multicore_io_manager_for/
http://hackage.haskell.org/package/accelerate
http://www.haskell.org/haskellwiki/Numeric_Haskell:_A_Repa_Tutorial

Mythology: Haskell is Purely Academic

Users in Industry

Projects in Haskell. Notably, for me:

pandoc: Used to make this talk
hakyll: static blog generator
ghcjs: haskell -> JS compiler
idris: dependently-typed FP language

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskell.org/haskellwiki/Haskell_in_industry
http://www.haskell.org/haskellwiki/Libraries_and_tools
http://johnmacfarlane.net/pandoc/README.html
http://jaspervdj.be/hakyll/
https://github.com/ghcjs/ghcjs
http://www.idris-lang.org/

Mythology: Haskell is Purely Academic

Users in Industry
Projects in Haskell. Notably, for me:

pandoc: Used to make this talk
hakyll: static blog generator
ghcjs: haskell -> JS compiler
idris: dependently-typed FP language

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskell.org/haskellwiki/Haskell_in_industry
http://www.haskell.org/haskellwiki/Libraries_and_tools
http://johnmacfarlane.net/pandoc/README.html
http://jaspervdj.be/hakyll/
https://github.com/ghcjs/ghcjs
http://www.idris-lang.org/

Mythology: Haskell is Purely Academic

Users in Industry
Projects in Haskell. Notably, for me:

pandoc: Used to make this talk

hakyll: static blog generator
ghcjs: haskell -> JS compiler
idris: dependently-typed FP language

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskell.org/haskellwiki/Haskell_in_industry
http://www.haskell.org/haskellwiki/Libraries_and_tools
http://johnmacfarlane.net/pandoc/README.html
http://jaspervdj.be/hakyll/
https://github.com/ghcjs/ghcjs
http://www.idris-lang.org/

Mythology: Haskell is Purely Academic

Users in Industry
Projects in Haskell. Notably, for me:

pandoc: Used to make this talk
hakyll: static blog generator

ghcjs: haskell -> JS compiler
idris: dependently-typed FP language

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskell.org/haskellwiki/Haskell_in_industry
http://www.haskell.org/haskellwiki/Libraries_and_tools
http://johnmacfarlane.net/pandoc/README.html
http://jaspervdj.be/hakyll/
https://github.com/ghcjs/ghcjs
http://www.idris-lang.org/

Mythology: Haskell is Purely Academic

Users in Industry
Projects in Haskell. Notably, for me:

pandoc: Used to make this talk
hakyll: static blog generator
ghcjs: haskell -> JS compiler

idris: dependently-typed FP language

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskell.org/haskellwiki/Haskell_in_industry
http://www.haskell.org/haskellwiki/Libraries_and_tools
http://johnmacfarlane.net/pandoc/README.html
http://jaspervdj.be/hakyll/
https://github.com/ghcjs/ghcjs
http://www.idris-lang.org/

Mythology: Haskell is Purely Academic

Users in Industry
Projects in Haskell. Notably, for me:

pandoc: Used to make this talk
hakyll: static blog generator
ghcjs: haskell -> JS compiler
idris: dependently-typed FP language

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskell.org/haskellwiki/Haskell_in_industry
http://www.haskell.org/haskellwiki/Libraries_and_tools
http://johnmacfarlane.net/pandoc/README.html
http://jaspervdj.be/hakyll/
https://github.com/ghcjs/ghcjs
http://www.idris-lang.org/

Just Enough Haskell?

We’ve covered:

Core syntax
Defining functions
Defining own types (of many kinds)

(pun intended)

Defining type classes
Some myth-smashing

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskell.org/haskellwiki/Kind

Just Enough Haskell?

We’ve covered:
Core syntax

Defining functions
Defining own types (of many kinds)

(pun intended)

Defining type classes
Some myth-smashing

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskell.org/haskellwiki/Kind

Just Enough Haskell?

We’ve covered:
Core syntax
Defining functions

Defining own types (of many kinds)

(pun intended)

Defining type classes
Some myth-smashing

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskell.org/haskellwiki/Kind

Just Enough Haskell?

We’ve covered:
Core syntax
Defining functions
Defining own types (of many kinds)

(pun intended)

Defining type classes
Some myth-smashing

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskell.org/haskellwiki/Kind

Just Enough Haskell?

We’ve covered:
Core syntax
Defining functions
Defining own types (of many kinds)

(pun intended)

Defining type classes
Some myth-smashing

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskell.org/haskellwiki/Kind

Just Enough Haskell?

We’ve covered:
Core syntax
Defining functions
Defining own types (of many kinds)

(pun intended)

Defining type classes

Some myth-smashing

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskell.org/haskellwiki/Kind

Just Enough Haskell?

We’ve covered:
Core syntax
Defining functions
Defining own types (of many kinds)

(pun intended)

Defining type classes
Some myth-smashing

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskell.org/haskellwiki/Kind

Leveraging the Wisdom of Functional Programming

Higher-order operations

Equational reasoning
Lambda calculus
Going further

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Leveraging the Wisdom of Functional Programming

Higher-order operations
Equational reasoning

Lambda calculus
Going further

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Leveraging the Wisdom of Functional Programming

Higher-order operations
Equational reasoning
Lambda calculus

Going further

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Leveraging the Wisdom of Functional Programming

Higher-order operations
Equational reasoning
Lambda calculus
Going further

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Higher-Order Thinking

“Can programming be liberated from the von-Neumann
Bottleneck?” – John Backus

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.thocp.net/biographies/papers/backus_turingaward_lecture.pdf

Higher-Order Thinking

As a fundamental notion, we can elevate the way we iterate
over data

These are the functions: map, filter, fold/reduce
They take a function and a collection to perform what they do

Tim Sweeney on: FP and higher-order ops 2006, pg. 35

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt

Higher-Order Thinking

As a fundamental notion, we can elevate the way we iterate
over data
These are the functions: map, filter, fold/reduce

They take a function and a collection to perform what they do

Tim Sweeney on: FP and higher-order ops 2006, pg. 35

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt

Higher-Order Thinking

As a fundamental notion, we can elevate the way we iterate
over data
These are the functions: map, filter, fold/reduce
They take a function and a collection to perform what they do

Tim Sweeney on: FP and higher-order ops 2006, pg. 35

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt

Higher-Order Thinking

As a fundamental notion, we can elevate the way we iterate
over data
These are the functions: map, filter, fold/reduce
They take a function and a collection to perform what they do

Tim Sweeney on: FP and higher-order ops 2006, pg. 35

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt

Iteration Pattern: Map

def map(f, xs):
result = []
for x in xs:

result.append(f(x))

return result

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Iteration Pattern: Map

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Iteration Pattern: Filter

def filter(f, xs):
result = []
for x in xs:

if f(x):
result.append(x)

return result

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Iteration Pattern: Filter

filter :: (a -> Bool) -> [a] -> [a]
filter _ [] = []
filter f (x:xs)

| f x = x : filter f xs
| otherwise = filter f xs

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Iteration Pattern: Reduce/Fold

def fold(f, init, xs):
result = init
for x in xs:

result = f(result, x)
return result

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Iteration Pattern: Reduce/Fold

-- note: this impl. not tail recursive
-- overflows stack for large [a]
fold :: (a -> b -> b) -> b -> [a] -> b
fold _ init [] = init
fold f init (x:xs) = f x $ fold f init xs

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Higher-Order Functions: Why?

map, filter, fold: powerful iteration primitives

Communicates intent clearly

Reader need only find primitives to determine intent

Also, composable and versatile

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Higher-Order Functions: Why?

map, filter, fold: powerful iteration primitives
Communicates intent clearly

Reader need only find primitives to determine intent

Also, composable and versatile

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Higher-Order Functions: Why?

map, filter, fold: powerful iteration primitives
Communicates intent clearly

Reader need only find primitives to determine intent

Also, composable and versatile

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Higher-Order Functions: Why?

map, filter, fold: powerful iteration primitives
Communicates intent clearly

Reader need only find primitives to determine intent

Also, composable and versatile

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Higher-Order Functions: Composed

> let xs = [1..5]

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Higher-Order Functions: Composed

> let xs = [1..5]
> map (+1) xs

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Higher-Order Functions: Composed

> let xs = [1..5]
> map (+1) xs
[2, 3, 4, 5, 6]

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Higher-Order Functions: Composed

> let xs = [1..5]
> map ((*2) . (+1)) xs

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Higher-Order Functions: Composed

> let xs = [1..5]
> map ((*2) . (+1)) xs
[6, 8, 10, 12, 14]

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Higher-Order Functions: Composed

> let xs = [1..5]
> filter (odd) $ map ((*2) . (+1)) xs

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Higher-Order Functions: Composed

> let xs = [1..5]
> filter (odd) $ map ((*2) . (+1)) xs
[]

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Higher-Order Functions: Composed

> let xs = [1..5]
> fold (*) 1 $ filter (odd) $ map (^2) xs

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Higher-Order Functions: Composed

> let xs = [1..5]
> fold (*) 1 $ filter (odd) $ map (^2) xs
225

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Higher-Order Functions: Composed

> let xs = [1..5]
> fold (*) 1 $ filter (odd) $ map (^2) xs
225
> -- product of odd numbered squares

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Higher-Order Vocabulary

Communicate intent, not details

Compose smaller pieces to build larger systems
Taken to the end: embedded domain-specific languages
(EDSLs)

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Higher-Order Vocabulary

Communicate intent, not details
Compose smaller pieces to build larger systems

Taken to the end: embedded domain-specific languages
(EDSLs)

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Higher-Order Vocabulary

Communicate intent, not details
Compose smaller pieces to build larger systems
Taken to the end: embedded domain-specific languages
(EDSLs)

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Equational Reasoning

In the absence of stateful modification, one can:

Substitute invocation of function for next step

Result:

Clear separation of concerns
Leak-free abstractions

Learn more: Equational reasoning

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskellforall.com/2013/12/equational-reasoning.html

Equational Reasoning

In the absence of stateful modification, one can:
Substitute invocation of function for next step

Result:

Clear separation of concerns
Leak-free abstractions

Learn more: Equational reasoning

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskellforall.com/2013/12/equational-reasoning.html

Equational Reasoning

In the absence of stateful modification, one can:
Substitute invocation of function for next step

Result:

Clear separation of concerns
Leak-free abstractions

Learn more: Equational reasoning

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskellforall.com/2013/12/equational-reasoning.html

Equational Reasoning

In the absence of stateful modification, one can:
Substitute invocation of function for next step

Result:
Clear separation of concerns

Leak-free abstractions

Learn more: Equational reasoning

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskellforall.com/2013/12/equational-reasoning.html

Equational Reasoning

In the absence of stateful modification, one can:
Substitute invocation of function for next step

Result:
Clear separation of concerns
Leak-free abstractions

Learn more: Equational reasoning

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskellforall.com/2013/12/equational-reasoning.html

Equational Reasoning

In the absence of stateful modification, one can:
Substitute invocation of function for next step

Result:
Clear separation of concerns
Leak-free abstractions

Learn more: Equational reasoning

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.haskellforall.com/2013/12/equational-reasoning.html

Going Further: Lambda Calculus

Basis for functional programming languages

Known to be Turing machine equivalent
Three primitives to express all computation:

Variable: x
Abstraction: \f.x x
Application: f x

Can be used to craft type-safe EDSLs
Learn more: Type-safe EDSLs

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://en.wikibooks.org/wiki/Haskell/GADT#Understanding_GADTs

Going Further: Lambda Calculus

Basis for functional programming languages
Known to be Turing machine equivalent

Three primitives to express all computation:

Variable: x
Abstraction: \f.x x
Application: f x

Can be used to craft type-safe EDSLs
Learn more: Type-safe EDSLs

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://en.wikibooks.org/wiki/Haskell/GADT#Understanding_GADTs

Going Further: Lambda Calculus

Basis for functional programming languages
Known to be Turing machine equivalent
Three primitives to express all computation:

Variable: x
Abstraction: \f.x x
Application: f x

Can be used to craft type-safe EDSLs
Learn more: Type-safe EDSLs

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://en.wikibooks.org/wiki/Haskell/GADT#Understanding_GADTs

Going Further: Lambda Calculus

Basis for functional programming languages
Known to be Turing machine equivalent
Three primitives to express all computation:

Variable: x

Abstraction: \f.x x
Application: f x

Can be used to craft type-safe EDSLs
Learn more: Type-safe EDSLs

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://en.wikibooks.org/wiki/Haskell/GADT#Understanding_GADTs

Going Further: Lambda Calculus

Basis for functional programming languages
Known to be Turing machine equivalent
Three primitives to express all computation:

Variable: x
Abstraction: \f.x x

Application: f x

Can be used to craft type-safe EDSLs
Learn more: Type-safe EDSLs

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://en.wikibooks.org/wiki/Haskell/GADT#Understanding_GADTs

Going Further: Lambda Calculus

Basis for functional programming languages
Known to be Turing machine equivalent
Three primitives to express all computation:

Variable: x
Abstraction: \f.x x
Application: f x

Can be used to craft type-safe EDSLs
Learn more: Type-safe EDSLs

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://en.wikibooks.org/wiki/Haskell/GADT#Understanding_GADTs

Going Further: Lambda Calculus

Basis for functional programming languages
Known to be Turing machine equivalent
Three primitives to express all computation:

Variable: x
Abstraction: \f.x x
Application: f x

Can be used to craft type-safe EDSLs

Learn more: Type-safe EDSLs

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://en.wikibooks.org/wiki/Haskell/GADT#Understanding_GADTs

Going Further: Lambda Calculus

Basis for functional programming languages
Known to be Turing machine equivalent
Three primitives to express all computation:

Variable: x
Abstraction: \f.x x
Application: f x

Can be used to craft type-safe EDSLs
Learn more: Type-safe EDSLs

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://en.wikibooks.org/wiki/Haskell/GADT#Understanding_GADTs

Going Further: More Higher-Order Primitives

There’s a few more primitives of interest

There’s also a mathematical vocabulary
Learn more: Bananas, Lenses, Envelopes, and Barbed Wire

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://eprints.eemcs.utwente.nl/7281/01/db-utwente-40501F46.pdf

Going Further: More Higher-Order Primitives

There’s a few more primitives of interest
There’s also a mathematical vocabulary

Learn more: Bananas, Lenses, Envelopes, and Barbed Wire

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://eprints.eemcs.utwente.nl/7281/01/db-utwente-40501F46.pdf

Going Further: More Higher-Order Primitives

There’s a few more primitives of interest
There’s also a mathematical vocabulary
Learn more: Bananas, Lenses, Envelopes, and Barbed Wire

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://eprints.eemcs.utwente.nl/7281/01/db-utwente-40501F46.pdf

Just Enough Functional Programming?

Think: higher-order

Map, fold, filter; not for and while

Small pieces -> clean abstractions
Preserve simplicity at each layer
Learn more: Why FP Matters

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

https://github.com/tavisrudd/vjc/blob/master/reading_list/why-functional-programming-matters.md

Just Enough Functional Programming?

Think: higher-order
Map, fold, filter; not for and while

Small pieces -> clean abstractions
Preserve simplicity at each layer
Learn more: Why FP Matters

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

https://github.com/tavisrudd/vjc/blob/master/reading_list/why-functional-programming-matters.md

Just Enough Functional Programming?

Think: higher-order
Map, fold, filter; not for and while

Small pieces -> clean abstractions

Preserve simplicity at each layer
Learn more: Why FP Matters

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

https://github.com/tavisrudd/vjc/blob/master/reading_list/why-functional-programming-matters.md

Just Enough Functional Programming?

Think: higher-order
Map, fold, filter; not for and while

Small pieces -> clean abstractions
Preserve simplicity at each layer

Learn more: Why FP Matters

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

https://github.com/tavisrudd/vjc/blob/master/reading_list/why-functional-programming-matters.md

Just Enough Functional Programming?

Think: higher-order
Map, fold, filter; not for and while

Small pieces -> clean abstractions
Preserve simplicity at each layer
Learn more: Why FP Matters

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

https://github.com/tavisrudd/vjc/blob/master/reading_list/why-functional-programming-matters.md

Leveraging Type Theory

What is type theory?

What is type safety?
Why do types matter?
Software development with rich types

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Leveraging Type Theory

What is type theory?
What is type safety?

Why do types matter?
Software development with rich types

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Leveraging Type Theory

What is type theory?
What is type safety?
Why do types matter?

Software development with rich types

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Leveraging Type Theory

What is type theory?
What is type safety?
Why do types matter?
Software development with rich types

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

What is Type Theory?

A formal system of reasoning

Sometimes proposed as an alternative to set theory

I call this refactoring the foundations of math

Direct connection to logic (Curry-Howard isomorphism)
Influences type systems

System F: (Girard–Reynolds) polymorphic lambda-calculus
Hindley–Milner type system

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.science4all.org/le-nguyen-hoang/type-theory/
http://en.wikibooks.org/wiki/Haskell/The_Curry-Howard_isomorphism

What is Type Theory?

A formal system of reasoning
Sometimes proposed as an alternative to set theory

I call this refactoring the foundations of math

Direct connection to logic (Curry-Howard isomorphism)
Influences type systems

System F: (Girard–Reynolds) polymorphic lambda-calculus
Hindley–Milner type system

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.science4all.org/le-nguyen-hoang/type-theory/
http://en.wikibooks.org/wiki/Haskell/The_Curry-Howard_isomorphism

What is Type Theory?

A formal system of reasoning
Sometimes proposed as an alternative to set theory

I call this refactoring the foundations of math

Direct connection to logic (Curry-Howard isomorphism)
Influences type systems

System F: (Girard–Reynolds) polymorphic lambda-calculus
Hindley–Milner type system

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.science4all.org/le-nguyen-hoang/type-theory/
http://en.wikibooks.org/wiki/Haskell/The_Curry-Howard_isomorphism

What is Type Theory?

A formal system of reasoning
Sometimes proposed as an alternative to set theory

I call this refactoring the foundations of math

Direct connection to logic (Curry-Howard isomorphism)

Influences type systems

System F: (Girard–Reynolds) polymorphic lambda-calculus
Hindley–Milner type system

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.science4all.org/le-nguyen-hoang/type-theory/
http://en.wikibooks.org/wiki/Haskell/The_Curry-Howard_isomorphism

What is Type Theory?

A formal system of reasoning
Sometimes proposed as an alternative to set theory

I call this refactoring the foundations of math

Direct connection to logic (Curry-Howard isomorphism)
Influences type systems

System F: (Girard–Reynolds) polymorphic lambda-calculus
Hindley–Milner type system

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.science4all.org/le-nguyen-hoang/type-theory/
http://en.wikibooks.org/wiki/Haskell/The_Curry-Howard_isomorphism

What is Type Theory?

A formal system of reasoning
Sometimes proposed as an alternative to set theory

I call this refactoring the foundations of math

Direct connection to logic (Curry-Howard isomorphism)
Influences type systems

System F: (Girard–Reynolds) polymorphic lambda-calculus

Hindley–Milner type system

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.science4all.org/le-nguyen-hoang/type-theory/
http://en.wikibooks.org/wiki/Haskell/The_Curry-Howard_isomorphism

What is Type Theory?

A formal system of reasoning
Sometimes proposed as an alternative to set theory

I call this refactoring the foundations of math

Direct connection to logic (Curry-Howard isomorphism)
Influences type systems

System F: (Girard–Reynolds) polymorphic lambda-calculus
Hindley–Milner type system

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.science4all.org/le-nguyen-hoang/type-theory/
http://en.wikibooks.org/wiki/Haskell/The_Curry-Howard_isomorphism

What is Type Safety?

A property of a type system that guarantees that:

If the program compiles
It will never “get stuck”
No undefined states

Safety = Preservation + Progress

Progress: a well-typed term t is either:

a value, t
a term t:T with a path t => t’

Preservation: types are preserved

t:T and t -> t’ => t’:T

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

What is Type Safety?

A property of a type system that guarantees that:
If the program compiles

It will never “get stuck”
No undefined states

Safety = Preservation + Progress

Progress: a well-typed term t is either:

a value, t
a term t:T with a path t => t’

Preservation: types are preserved

t:T and t -> t’ => t’:T

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

What is Type Safety?

A property of a type system that guarantees that:
If the program compiles
It will never “get stuck”

No undefined states

Safety = Preservation + Progress

Progress: a well-typed term t is either:

a value, t
a term t:T with a path t => t’

Preservation: types are preserved

t:T and t -> t’ => t’:T

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

What is Type Safety?

A property of a type system that guarantees that:
If the program compiles
It will never “get stuck”
No undefined states

Safety = Preservation + Progress

Progress: a well-typed term t is either:

a value, t
a term t:T with a path t => t’

Preservation: types are preserved

t:T and t -> t’ => t’:T

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

What is Type Safety?

A property of a type system that guarantees that:
If the program compiles
It will never “get stuck”
No undefined states

Safety = Preservation + Progress

Progress: a well-typed term t is either:

a value, t
a term t:T with a path t => t’

Preservation: types are preserved

t:T and t -> t’ => t’:T

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

What is Type Safety?

A property of a type system that guarantees that:
If the program compiles
It will never “get stuck”
No undefined states

Safety = Preservation + Progress
Progress: a well-typed term t is either:

a value, t
a term t:T with a path t => t’

Preservation: types are preserved

t:T and t -> t’ => t’:T

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

What is Type Safety?

A property of a type system that guarantees that:
If the program compiles
It will never “get stuck”
No undefined states

Safety = Preservation + Progress
Progress: a well-typed term t is either:

a value, t

a term t:T with a path t => t’

Preservation: types are preserved

t:T and t -> t’ => t’:T

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

What is Type Safety?

A property of a type system that guarantees that:
If the program compiles
It will never “get stuck”
No undefined states

Safety = Preservation + Progress
Progress: a well-typed term t is either:

a value, t
a term t:T with a path t => t’

Preservation: types are preserved

t:T and t -> t’ => t’:T

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

What is Type Safety?

A property of a type system that guarantees that:
If the program compiles
It will never “get stuck”
No undefined states

Safety = Preservation + Progress
Progress: a well-typed term t is either:

a value, t
a term t:T with a path t => t’

Preservation: types are preserved

t:T and t -> t’ => t’:T

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

What is Type Safety?

A property of a type system that guarantees that:
If the program compiles
It will never “get stuck”
No undefined states

Safety = Preservation + Progress
Progress: a well-typed term t is either:

a value, t
a term t:T with a path t => t’

Preservation: types are preserved
t:T and t -> t’ => t’:T

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Why Do Types Matter?

“Program testing can be used to show the presence of
bugs, but never there absence.” – Edsger W. Dijkstra

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Why Do Types Matter?

It is not enough to reach 100% test coverage

Must prove that certain states cannot be reached

“Make illegal states unrepresentable”: video – Yaron Minsky

Communicate design

Compiler enforces assumptions and abstractions
Turn “don’t do that” -> “can’t do that”: video

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://vimeo.com/14313378
https://blog.cppcabrera.com/posts/reality-and-programming.html
http://vimeo.com/72870631

Why Do Types Matter?

It is not enough to reach 100% test coverage
Must prove that certain states cannot be reached

“Make illegal states unrepresentable”: video – Yaron Minsky

Communicate design

Compiler enforces assumptions and abstractions
Turn “don’t do that” -> “can’t do that”: video

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://vimeo.com/14313378
https://blog.cppcabrera.com/posts/reality-and-programming.html
http://vimeo.com/72870631

Why Do Types Matter?

It is not enough to reach 100% test coverage
Must prove that certain states cannot be reached

“Make illegal states unrepresentable”: video – Yaron Minsky

Communicate design

Compiler enforces assumptions and abstractions
Turn “don’t do that” -> “can’t do that”: video

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://vimeo.com/14313378
https://blog.cppcabrera.com/posts/reality-and-programming.html
http://vimeo.com/72870631

Why Do Types Matter?

It is not enough to reach 100% test coverage
Must prove that certain states cannot be reached

“Make illegal states unrepresentable”: video – Yaron Minsky

Communicate design

Compiler enforces assumptions and abstractions
Turn “don’t do that” -> “can’t do that”: video

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://vimeo.com/14313378
https://blog.cppcabrera.com/posts/reality-and-programming.html
http://vimeo.com/72870631

Why Do Types Matter?

It is not enough to reach 100% test coverage
Must prove that certain states cannot be reached

“Make illegal states unrepresentable”: video – Yaron Minsky

Communicate design
Compiler enforces assumptions and abstractions

Turn “don’t do that” -> “can’t do that”: video

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://vimeo.com/14313378
https://blog.cppcabrera.com/posts/reality-and-programming.html
http://vimeo.com/72870631

Why Do Types Matter?

It is not enough to reach 100% test coverage
Must prove that certain states cannot be reached

“Make illegal states unrepresentable”: video – Yaron Minsky

Communicate design
Compiler enforces assumptions and abstractions
Turn “don’t do that” -> “can’t do that”: video

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://vimeo.com/14313378
https://blog.cppcabrera.com/posts/reality-and-programming.html
http://vimeo.com/72870631

Software Development with Rich Types

Encode enough representation in type system

Abstract data types + type constraints
Transitions as functions

Iteratively refine the assumptions
Compile the code
Repeat as needed with refactorings
Learn more: type-driven development

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://tomasp.net/blog/type-first-development.aspx/

Software Development with Rich Types

Encode enough representation in type system
Abstract data types + type constraints

Transitions as functions

Iteratively refine the assumptions
Compile the code
Repeat as needed with refactorings
Learn more: type-driven development

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://tomasp.net/blog/type-first-development.aspx/

Software Development with Rich Types

Encode enough representation in type system
Abstract data types + type constraints
Transitions as functions

Iteratively refine the assumptions
Compile the code
Repeat as needed with refactorings
Learn more: type-driven development

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://tomasp.net/blog/type-first-development.aspx/

Software Development with Rich Types

Encode enough representation in type system
Abstract data types + type constraints
Transitions as functions

Iteratively refine the assumptions

Compile the code
Repeat as needed with refactorings
Learn more: type-driven development

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://tomasp.net/blog/type-first-development.aspx/

Software Development with Rich Types

Encode enough representation in type system
Abstract data types + type constraints
Transitions as functions

Iteratively refine the assumptions
Compile the code

Repeat as needed with refactorings
Learn more: type-driven development

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://tomasp.net/blog/type-first-development.aspx/

Software Development with Rich Types

Encode enough representation in type system
Abstract data types + type constraints
Transitions as functions

Iteratively refine the assumptions
Compile the code
Repeat as needed with refactorings

Learn more: type-driven development

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://tomasp.net/blog/type-first-development.aspx/

Software Development with Rich Types

Encode enough representation in type system
Abstract data types + type constraints
Transitions as functions

Iteratively refine the assumptions
Compile the code
Repeat as needed with refactorings
Learn more: type-driven development

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://tomasp.net/blog/type-first-development.aspx/

Types: Learning Even More

Start here: Types and Programming Languages

Deeper dives:

Practical Foundations for Programming Languages
Category Theory
Why Dependent Types Matter
Certified Programming With Dependent Types

Specific applications:

Verified TLS
Verified OS

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.cis.upenn.edu/~bcpierce/tapl/
http://www.cs.cmu.edu/~rwh/plbook/book.pdf
http://math.stackexchange.com/questions/370/good-books-and-lecture-notes-about-category-theory
http://www.cs.nott.ac.uk/~txa/publ/ydtm.pdf
http://adam.chlipala.net/cpdt/
http://www.mitls.org/wsgi
http://en.wikipedia.org/wiki/L4_microkernel_family

Types: Learning Even More

Start here: Types and Programming Languages
Deeper dives:

Practical Foundations for Programming Languages
Category Theory
Why Dependent Types Matter
Certified Programming With Dependent Types

Specific applications:

Verified TLS
Verified OS

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.cis.upenn.edu/~bcpierce/tapl/
http://www.cs.cmu.edu/~rwh/plbook/book.pdf
http://math.stackexchange.com/questions/370/good-books-and-lecture-notes-about-category-theory
http://www.cs.nott.ac.uk/~txa/publ/ydtm.pdf
http://adam.chlipala.net/cpdt/
http://www.mitls.org/wsgi
http://en.wikipedia.org/wiki/L4_microkernel_family

Types: Learning Even More

Start here: Types and Programming Languages
Deeper dives:

Practical Foundations for Programming Languages

Category Theory
Why Dependent Types Matter
Certified Programming With Dependent Types

Specific applications:

Verified TLS
Verified OS

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.cis.upenn.edu/~bcpierce/tapl/
http://www.cs.cmu.edu/~rwh/plbook/book.pdf
http://math.stackexchange.com/questions/370/good-books-and-lecture-notes-about-category-theory
http://www.cs.nott.ac.uk/~txa/publ/ydtm.pdf
http://adam.chlipala.net/cpdt/
http://www.mitls.org/wsgi
http://en.wikipedia.org/wiki/L4_microkernel_family

Types: Learning Even More

Start here: Types and Programming Languages
Deeper dives:

Practical Foundations for Programming Languages
Category Theory

Why Dependent Types Matter
Certified Programming With Dependent Types

Specific applications:

Verified TLS
Verified OS

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.cis.upenn.edu/~bcpierce/tapl/
http://www.cs.cmu.edu/~rwh/plbook/book.pdf
http://math.stackexchange.com/questions/370/good-books-and-lecture-notes-about-category-theory
http://www.cs.nott.ac.uk/~txa/publ/ydtm.pdf
http://adam.chlipala.net/cpdt/
http://www.mitls.org/wsgi
http://en.wikipedia.org/wiki/L4_microkernel_family

Types: Learning Even More

Start here: Types and Programming Languages
Deeper dives:

Practical Foundations for Programming Languages
Category Theory
Why Dependent Types Matter

Certified Programming With Dependent Types

Specific applications:

Verified TLS
Verified OS

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.cis.upenn.edu/~bcpierce/tapl/
http://www.cs.cmu.edu/~rwh/plbook/book.pdf
http://math.stackexchange.com/questions/370/good-books-and-lecture-notes-about-category-theory
http://www.cs.nott.ac.uk/~txa/publ/ydtm.pdf
http://adam.chlipala.net/cpdt/
http://www.mitls.org/wsgi
http://en.wikipedia.org/wiki/L4_microkernel_family

Types: Learning Even More

Start here: Types and Programming Languages
Deeper dives:

Practical Foundations for Programming Languages
Category Theory
Why Dependent Types Matter
Certified Programming With Dependent Types

Specific applications:

Verified TLS
Verified OS

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.cis.upenn.edu/~bcpierce/tapl/
http://www.cs.cmu.edu/~rwh/plbook/book.pdf
http://math.stackexchange.com/questions/370/good-books-and-lecture-notes-about-category-theory
http://www.cs.nott.ac.uk/~txa/publ/ydtm.pdf
http://adam.chlipala.net/cpdt/
http://www.mitls.org/wsgi
http://en.wikipedia.org/wiki/L4_microkernel_family

Types: Learning Even More

Start here: Types and Programming Languages
Deeper dives:

Practical Foundations for Programming Languages
Category Theory
Why Dependent Types Matter
Certified Programming With Dependent Types

Specific applications:

Verified TLS
Verified OS

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.cis.upenn.edu/~bcpierce/tapl/
http://www.cs.cmu.edu/~rwh/plbook/book.pdf
http://math.stackexchange.com/questions/370/good-books-and-lecture-notes-about-category-theory
http://www.cs.nott.ac.uk/~txa/publ/ydtm.pdf
http://adam.chlipala.net/cpdt/
http://www.mitls.org/wsgi
http://en.wikipedia.org/wiki/L4_microkernel_family

Types: Learning Even More

Start here: Types and Programming Languages
Deeper dives:

Practical Foundations for Programming Languages
Category Theory
Why Dependent Types Matter
Certified Programming With Dependent Types

Specific applications:
Verified TLS

Verified OS

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.cis.upenn.edu/~bcpierce/tapl/
http://www.cs.cmu.edu/~rwh/plbook/book.pdf
http://math.stackexchange.com/questions/370/good-books-and-lecture-notes-about-category-theory
http://www.cs.nott.ac.uk/~txa/publ/ydtm.pdf
http://adam.chlipala.net/cpdt/
http://www.mitls.org/wsgi
http://en.wikipedia.org/wiki/L4_microkernel_family

Types: Learning Even More

Start here: Types and Programming Languages
Deeper dives:

Practical Foundations for Programming Languages
Category Theory
Why Dependent Types Matter
Certified Programming With Dependent Types

Specific applications:
Verified TLS
Verified OS

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://www.cis.upenn.edu/~bcpierce/tapl/
http://www.cs.cmu.edu/~rwh/plbook/book.pdf
http://math.stackexchange.com/questions/370/good-books-and-lecture-notes-about-category-theory
http://www.cs.nott.ac.uk/~txa/publ/ydtm.pdf
http://adam.chlipala.net/cpdt/
http://www.mitls.org/wsgi
http://en.wikipedia.org/wiki/L4_microkernel_family

What We Didn’t Talk About

Monads, Functors, and Category Theory

Haskell ecosystem

Libraries
Editors
QuickCheck, and property-based testing

Deprecates unit testing, for the most part

cabal
setup and flow

Type theory

Haskell limitations here
Higher-kinded programming
GADTs

Areas of active research in all of the above

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://learnyouahaskell.com/a-fistful-of-monads
http://learnyouahaskell.com/functors-applicative-functors-and-monoids
http://www.haskell.org/cabal/
http://www.haskell.org/haskellwiki/How_to_write_a_Haskell_program

What We Didn’t Talk About

Monads, Functors, and Category Theory
Haskell ecosystem

Libraries
Editors
QuickCheck, and property-based testing

Deprecates unit testing, for the most part

cabal
setup and flow

Type theory

Haskell limitations here
Higher-kinded programming
GADTs

Areas of active research in all of the above

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://learnyouahaskell.com/a-fistful-of-monads
http://learnyouahaskell.com/functors-applicative-functors-and-monoids
http://www.haskell.org/cabal/
http://www.haskell.org/haskellwiki/How_to_write_a_Haskell_program

What We Didn’t Talk About

Monads, Functors, and Category Theory
Haskell ecosystem

Libraries

Editors
QuickCheck, and property-based testing

Deprecates unit testing, for the most part

cabal
setup and flow

Type theory

Haskell limitations here
Higher-kinded programming
GADTs

Areas of active research in all of the above

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://learnyouahaskell.com/a-fistful-of-monads
http://learnyouahaskell.com/functors-applicative-functors-and-monoids
http://www.haskell.org/cabal/
http://www.haskell.org/haskellwiki/How_to_write_a_Haskell_program

What We Didn’t Talk About

Monads, Functors, and Category Theory
Haskell ecosystem

Libraries
Editors

QuickCheck, and property-based testing

Deprecates unit testing, for the most part

cabal
setup and flow

Type theory

Haskell limitations here
Higher-kinded programming
GADTs

Areas of active research in all of the above

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://learnyouahaskell.com/a-fistful-of-monads
http://learnyouahaskell.com/functors-applicative-functors-and-monoids
http://www.haskell.org/cabal/
http://www.haskell.org/haskellwiki/How_to_write_a_Haskell_program

What We Didn’t Talk About

Monads, Functors, and Category Theory
Haskell ecosystem

Libraries
Editors
QuickCheck, and property-based testing

Deprecates unit testing, for the most part

cabal
setup and flow

Type theory

Haskell limitations here
Higher-kinded programming
GADTs

Areas of active research in all of the above

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://learnyouahaskell.com/a-fistful-of-monads
http://learnyouahaskell.com/functors-applicative-functors-and-monoids
http://www.haskell.org/cabal/
http://www.haskell.org/haskellwiki/How_to_write_a_Haskell_program

What We Didn’t Talk About

Monads, Functors, and Category Theory
Haskell ecosystem

Libraries
Editors
QuickCheck, and property-based testing

Deprecates unit testing, for the most part

cabal
setup and flow

Type theory

Haskell limitations here
Higher-kinded programming
GADTs

Areas of active research in all of the above

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://learnyouahaskell.com/a-fistful-of-monads
http://learnyouahaskell.com/functors-applicative-functors-and-monoids
http://www.haskell.org/cabal/
http://www.haskell.org/haskellwiki/How_to_write_a_Haskell_program

What We Didn’t Talk About

Monads, Functors, and Category Theory
Haskell ecosystem

Libraries
Editors
QuickCheck, and property-based testing

Deprecates unit testing, for the most part

cabal

setup and flow

Type theory

Haskell limitations here
Higher-kinded programming
GADTs

Areas of active research in all of the above

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://learnyouahaskell.com/a-fistful-of-monads
http://learnyouahaskell.com/functors-applicative-functors-and-monoids
http://www.haskell.org/cabal/
http://www.haskell.org/haskellwiki/How_to_write_a_Haskell_program

What We Didn’t Talk About

Monads, Functors, and Category Theory
Haskell ecosystem

Libraries
Editors
QuickCheck, and property-based testing

Deprecates unit testing, for the most part

cabal
setup and flow

Type theory

Haskell limitations here
Higher-kinded programming
GADTs

Areas of active research in all of the above

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://learnyouahaskell.com/a-fistful-of-monads
http://learnyouahaskell.com/functors-applicative-functors-and-monoids
http://www.haskell.org/cabal/
http://www.haskell.org/haskellwiki/How_to_write_a_Haskell_program

What We Didn’t Talk About

Monads, Functors, and Category Theory
Haskell ecosystem

Libraries
Editors
QuickCheck, and property-based testing

Deprecates unit testing, for the most part

cabal
setup and flow

Type theory

Haskell limitations here
Higher-kinded programming
GADTs

Areas of active research in all of the above

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://learnyouahaskell.com/a-fistful-of-monads
http://learnyouahaskell.com/functors-applicative-functors-and-monoids
http://www.haskell.org/cabal/
http://www.haskell.org/haskellwiki/How_to_write_a_Haskell_program

What We Didn’t Talk About

Monads, Functors, and Category Theory
Haskell ecosystem

Libraries
Editors
QuickCheck, and property-based testing

Deprecates unit testing, for the most part

cabal
setup and flow

Type theory
Haskell limitations here

Higher-kinded programming
GADTs

Areas of active research in all of the above

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://learnyouahaskell.com/a-fistful-of-monads
http://learnyouahaskell.com/functors-applicative-functors-and-monoids
http://www.haskell.org/cabal/
http://www.haskell.org/haskellwiki/How_to_write_a_Haskell_program

What We Didn’t Talk About

Monads, Functors, and Category Theory
Haskell ecosystem

Libraries
Editors
QuickCheck, and property-based testing

Deprecates unit testing, for the most part

cabal
setup and flow

Type theory
Haskell limitations here
Higher-kinded programming

GADTs

Areas of active research in all of the above

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://learnyouahaskell.com/a-fistful-of-monads
http://learnyouahaskell.com/functors-applicative-functors-and-monoids
http://www.haskell.org/cabal/
http://www.haskell.org/haskellwiki/How_to_write_a_Haskell_program

What We Didn’t Talk About

Monads, Functors, and Category Theory
Haskell ecosystem

Libraries
Editors
QuickCheck, and property-based testing

Deprecates unit testing, for the most part

cabal
setup and flow

Type theory
Haskell limitations here
Higher-kinded programming
GADTs

Areas of active research in all of the above

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://learnyouahaskell.com/a-fistful-of-monads
http://learnyouahaskell.com/functors-applicative-functors-and-monoids
http://www.haskell.org/cabal/
http://www.haskell.org/haskellwiki/How_to_write_a_Haskell_program

What We Didn’t Talk About

Monads, Functors, and Category Theory
Haskell ecosystem

Libraries
Editors
QuickCheck, and property-based testing

Deprecates unit testing, for the most part

cabal
setup and flow

Type theory
Haskell limitations here
Higher-kinded programming
GADTs

Areas of active research in all of the above

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://learnyouahaskell.com/a-fistful-of-monads
http://learnyouahaskell.com/functors-applicative-functors-and-monoids
http://www.haskell.org/cabal/
http://www.haskell.org/haskellwiki/How_to_write_a_Haskell_program

Closing Words

Leveraging functions,

. . . leveraging types,

. . . enlisting several decades of research in programming
languages,
. . . and several more decades of research in math and logic
. . . We can strive for a functional future!

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Closing Words

Leveraging functions,
. . . leveraging types,

. . . enlisting several decades of research in programming
languages,
. . . and several more decades of research in math and logic
. . . We can strive for a functional future!

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Closing Words

Leveraging functions,
. . . leveraging types,
. . . enlisting several decades of research in programming
languages,

. . . and several more decades of research in math and logic

. . . We can strive for a functional future!

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Closing Words

Leveraging functions,
. . . leveraging types,
. . . enlisting several decades of research in programming
languages,
. . . and several more decades of research in math and logic

. . . We can strive for a functional future!

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Closing Words

Leveraging functions,
. . . leveraging types,
. . . enlisting several decades of research in programming
languages,
. . . and several more decades of research in math and logic
. . . We can strive for a functional future!

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

Additional Resources

Learn You a Haskell

Real World Haskell
Stephen Diel’s Essential Haskell
Several friendly posts by Eric Rasmussen
So many good resources to really learn from!

Each word is a link – have fun!

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://learnyouahaskell.com/
http://book.realworldhaskell.org/
http://www.stephendiehl.com/posts/essential_haskell.html
http://chromaticleaves.com/tags/haskell.html
http://bitemyapp.com/
http://www.haskellforall.com/
http://www.haskellcast.com/
http://bentnib.org/posts.html
http://blog.ezyang.com/archives/
http://blog.higher-order.com/
http://staff.science.uva.nl/~poss/haskell-for-ocaml-programmers.html

Additional Resources

Learn You a Haskell
Real World Haskell

Stephen Diel’s Essential Haskell
Several friendly posts by Eric Rasmussen
So many good resources to really learn from!

Each word is a link – have fun!

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://learnyouahaskell.com/
http://book.realworldhaskell.org/
http://www.stephendiehl.com/posts/essential_haskell.html
http://chromaticleaves.com/tags/haskell.html
http://bitemyapp.com/
http://www.haskellforall.com/
http://www.haskellcast.com/
http://bentnib.org/posts.html
http://blog.ezyang.com/archives/
http://blog.higher-order.com/
http://staff.science.uva.nl/~poss/haskell-for-ocaml-programmers.html

Additional Resources

Learn You a Haskell
Real World Haskell
Stephen Diel’s Essential Haskell

Several friendly posts by Eric Rasmussen
So many good resources to really learn from!

Each word is a link – have fun!

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://learnyouahaskell.com/
http://book.realworldhaskell.org/
http://www.stephendiehl.com/posts/essential_haskell.html
http://chromaticleaves.com/tags/haskell.html
http://bitemyapp.com/
http://www.haskellforall.com/
http://www.haskellcast.com/
http://bentnib.org/posts.html
http://blog.ezyang.com/archives/
http://blog.higher-order.com/
http://staff.science.uva.nl/~poss/haskell-for-ocaml-programmers.html

Additional Resources

Learn You a Haskell
Real World Haskell
Stephen Diel’s Essential Haskell
Several friendly posts by Eric Rasmussen

So many good resources to really learn from!

Each word is a link – have fun!

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://learnyouahaskell.com/
http://book.realworldhaskell.org/
http://www.stephendiehl.com/posts/essential_haskell.html
http://chromaticleaves.com/tags/haskell.html
http://bitemyapp.com/
http://www.haskellforall.com/
http://www.haskellcast.com/
http://bentnib.org/posts.html
http://blog.ezyang.com/archives/
http://blog.higher-order.com/
http://staff.science.uva.nl/~poss/haskell-for-ocaml-programmers.html

Additional Resources

Learn You a Haskell
Real World Haskell
Stephen Diel’s Essential Haskell
Several friendly posts by Eric Rasmussen
So many good resources to really learn from!

Each word is a link – have fun!

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://learnyouahaskell.com/
http://book.realworldhaskell.org/
http://www.stephendiehl.com/posts/essential_haskell.html
http://chromaticleaves.com/tags/haskell.html
http://bitemyapp.com/
http://www.haskellforall.com/
http://www.haskellcast.com/
http://bentnib.org/posts.html
http://blog.ezyang.com/archives/
http://blog.higher-order.com/
http://staff.science.uva.nl/~poss/haskell-for-ocaml-programmers.html

Additional Resources

Learn You a Haskell
Real World Haskell
Stephen Diel’s Essential Haskell
Several friendly posts by Eric Rasmussen
So many good resources to really learn from!

Each word is a link – have fun!

Allele Dev (@queertypes) An Introduction to Haskell, Type Systems, and Functional Programming

http://learnyouahaskell.com/
http://book.realworldhaskell.org/
http://www.stephendiehl.com/posts/essential_haskell.html
http://chromaticleaves.com/tags/haskell.html
http://bitemyapp.com/
http://www.haskellforall.com/
http://www.haskellcast.com/
http://bentnib.org/posts.html
http://blog.ezyang.com/archives/
http://blog.higher-order.com/
http://staff.science.uva.nl/~poss/haskell-for-ocaml-programmers.html

